Step |
Hyp |
Ref |
Expression |
1 |
|
tfrlem.1 |
⊢ 𝐴 = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } |
2 |
1
|
tfrlem3 |
⊢ 𝐴 = { 𝑔 ∣ ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) } |
3 |
2
|
abeq2i |
⊢ ( 𝑔 ∈ 𝐴 ↔ ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) ) |
4 |
|
fnfun |
⊢ ( 𝑔 Fn 𝑧 → Fun 𝑔 ) |
5 |
4
|
adantr |
⊢ ( ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) → Fun 𝑔 ) |
6 |
5
|
rexlimivw |
⊢ ( ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) → Fun 𝑔 ) |
7 |
3 6
|
sylbi |
⊢ ( 𝑔 ∈ 𝐴 → Fun 𝑔 ) |