Step |
Hyp |
Ref |
Expression |
1 |
|
tfrlem.1 |
⊢ 𝐴 = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } |
2 |
1
|
tfrlem3 |
⊢ 𝐴 = { 𝑔 ∣ ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) } |
3 |
2
|
abeq2i |
⊢ ( 𝑔 ∈ 𝐴 ↔ ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) ) |
4 |
|
fndm |
⊢ ( 𝑔 Fn 𝑧 → dom 𝑔 = 𝑧 ) |
5 |
4
|
adantr |
⊢ ( ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) → dom 𝑔 = 𝑧 ) |
6 |
5
|
eleq1d |
⊢ ( ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) → ( dom 𝑔 ∈ On ↔ 𝑧 ∈ On ) ) |
7 |
6
|
biimprcd |
⊢ ( 𝑧 ∈ On → ( ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) → dom 𝑔 ∈ On ) ) |
8 |
7
|
rexlimiv |
⊢ ( ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑤 ) ) ) → dom 𝑔 ∈ On ) |
9 |
3 8
|
sylbi |
⊢ ( 𝑔 ∈ 𝐴 → dom 𝑔 ∈ On ) |
10 |
|
eleq1a |
⊢ ( dom 𝑔 ∈ On → ( 𝑧 = dom 𝑔 → 𝑧 ∈ On ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑔 ∈ 𝐴 → ( 𝑧 = dom 𝑔 → 𝑧 ∈ On ) ) |
12 |
11
|
rexlimiv |
⊢ ( ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 → 𝑧 ∈ On ) |
13 |
12
|
abssi |
⊢ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } ⊆ On |
14 |
|
ssorduni |
⊢ ( { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } ⊆ On → Ord ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } ) |
15 |
13 14
|
ax-mp |
⊢ Ord ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } |
16 |
1
|
recsfval |
⊢ recs ( 𝐹 ) = ∪ 𝐴 |
17 |
16
|
dmeqi |
⊢ dom recs ( 𝐹 ) = dom ∪ 𝐴 |
18 |
|
dmuni |
⊢ dom ∪ 𝐴 = ∪ 𝑔 ∈ 𝐴 dom 𝑔 |
19 |
|
vex |
⊢ 𝑔 ∈ V |
20 |
19
|
dmex |
⊢ dom 𝑔 ∈ V |
21 |
20
|
dfiun2 |
⊢ ∪ 𝑔 ∈ 𝐴 dom 𝑔 = ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } |
22 |
17 18 21
|
3eqtri |
⊢ dom recs ( 𝐹 ) = ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } |
23 |
|
ordeq |
⊢ ( dom recs ( 𝐹 ) = ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } → ( Ord dom recs ( 𝐹 ) ↔ Ord ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } ) ) |
24 |
22 23
|
ax-mp |
⊢ ( Ord dom recs ( 𝐹 ) ↔ Ord ∪ { 𝑧 ∣ ∃ 𝑔 ∈ 𝐴 𝑧 = dom 𝑔 } ) |
25 |
15 24
|
mpbir |
⊢ Ord dom recs ( 𝐹 ) |