Step |
Hyp |
Ref |
Expression |
1 |
|
tfrlem.1 |
⊢ 𝐴 = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } |
2 |
1
|
tfrlem7 |
⊢ Fun recs ( 𝐹 ) |
3 |
|
funfvop |
⊢ ( ( Fun recs ( 𝐹 ) ∧ 𝐵 ∈ dom recs ( 𝐹 ) ) → 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ recs ( 𝐹 ) ) |
4 |
2 3
|
mpan |
⊢ ( 𝐵 ∈ dom recs ( 𝐹 ) → 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ recs ( 𝐹 ) ) |
5 |
1
|
recsfval |
⊢ recs ( 𝐹 ) = ∪ 𝐴 |
6 |
5
|
eleq2i |
⊢ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ recs ( 𝐹 ) ↔ 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ ∪ 𝐴 ) |
7 |
|
eluni |
⊢ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ ∪ 𝐴 ↔ ∃ 𝑔 ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) |
8 |
6 7
|
bitri |
⊢ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ recs ( 𝐹 ) ↔ ∃ 𝑔 ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) |
9 |
4 8
|
sylib |
⊢ ( 𝐵 ∈ dom recs ( 𝐹 ) → ∃ 𝑔 ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) |
10 |
|
simprr |
⊢ ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) → 𝑔 ∈ 𝐴 ) |
11 |
|
vex |
⊢ 𝑔 ∈ V |
12 |
1 11
|
tfrlem3a |
⊢ ( 𝑔 ∈ 𝐴 ↔ ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑎 ∈ 𝑧 ( 𝑔 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑎 ) ) ) ) |
13 |
10 12
|
sylib |
⊢ ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) → ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑎 ∈ 𝑧 ( 𝑔 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑎 ) ) ) ) |
14 |
2
|
a1i |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → Fun recs ( 𝐹 ) ) |
15 |
|
simplrr |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝑔 ∈ 𝐴 ) |
16 |
|
elssuni |
⊢ ( 𝑔 ∈ 𝐴 → 𝑔 ⊆ ∪ 𝐴 ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝑔 ⊆ ∪ 𝐴 ) |
18 |
17 5
|
sseqtrrdi |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝑔 ⊆ recs ( 𝐹 ) ) |
19 |
|
fndm |
⊢ ( 𝑔 Fn 𝑧 → dom 𝑔 = 𝑧 ) |
20 |
19
|
ad2antll |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → dom 𝑔 = 𝑧 ) |
21 |
|
simprl |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝑧 ∈ On ) |
22 |
20 21
|
eqeltrd |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → dom 𝑔 ∈ On ) |
23 |
|
eloni |
⊢ ( dom 𝑔 ∈ On → Ord dom 𝑔 ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → Ord dom 𝑔 ) |
25 |
|
simpll |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝐵 ∈ dom recs ( 𝐹 ) ) |
26 |
|
fvexd |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → ( recs ( 𝐹 ) ‘ 𝐵 ) ∈ V ) |
27 |
|
simplrl |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ) |
28 |
|
df-br |
⊢ ( 𝐵 𝑔 ( recs ( 𝐹 ) ‘ 𝐵 ) ↔ 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ) |
29 |
27 28
|
sylibr |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝐵 𝑔 ( recs ( 𝐹 ) ‘ 𝐵 ) ) |
30 |
|
breldmg |
⊢ ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( recs ( 𝐹 ) ‘ 𝐵 ) ∈ V ∧ 𝐵 𝑔 ( recs ( 𝐹 ) ‘ 𝐵 ) ) → 𝐵 ∈ dom 𝑔 ) |
31 |
25 26 29 30
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝐵 ∈ dom 𝑔 ) |
32 |
|
ordelss |
⊢ ( ( Ord dom 𝑔 ∧ 𝐵 ∈ dom 𝑔 ) → 𝐵 ⊆ dom 𝑔 ) |
33 |
24 31 32
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → 𝐵 ⊆ dom 𝑔 ) |
34 |
|
fun2ssres |
⊢ ( ( Fun recs ( 𝐹 ) ∧ 𝑔 ⊆ recs ( 𝐹 ) ∧ 𝐵 ⊆ dom 𝑔 ) → ( recs ( 𝐹 ) ↾ 𝐵 ) = ( 𝑔 ↾ 𝐵 ) ) |
35 |
14 18 33 34
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → ( recs ( 𝐹 ) ↾ 𝐵 ) = ( 𝑔 ↾ 𝐵 ) ) |
36 |
11
|
resex |
⊢ ( 𝑔 ↾ 𝐵 ) ∈ V |
37 |
36
|
a1i |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → ( 𝑔 ↾ 𝐵 ) ∈ V ) |
38 |
35 37
|
eqeltrd |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ ( 𝑧 ∈ On ∧ 𝑔 Fn 𝑧 ) ) → ( recs ( 𝐹 ) ↾ 𝐵 ) ∈ V ) |
39 |
38
|
expr |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ 𝑧 ∈ On ) → ( 𝑔 Fn 𝑧 → ( recs ( 𝐹 ) ↾ 𝐵 ) ∈ V ) ) |
40 |
39
|
adantrd |
⊢ ( ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) ∧ 𝑧 ∈ On ) → ( ( 𝑔 Fn 𝑧 ∧ ∀ 𝑎 ∈ 𝑧 ( 𝑔 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑎 ) ) ) → ( recs ( 𝐹 ) ↾ 𝐵 ) ∈ V ) ) |
41 |
40
|
rexlimdva |
⊢ ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) → ( ∃ 𝑧 ∈ On ( 𝑔 Fn 𝑧 ∧ ∀ 𝑎 ∈ 𝑧 ( 𝑔 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑔 ↾ 𝑎 ) ) ) → ( recs ( 𝐹 ) ↾ 𝐵 ) ∈ V ) ) |
42 |
13 41
|
mpd |
⊢ ( ( 𝐵 ∈ dom recs ( 𝐹 ) ∧ ( 〈 𝐵 , ( recs ( 𝐹 ) ‘ 𝐵 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴 ) ) → ( recs ( 𝐹 ) ↾ 𝐵 ) ∈ V ) |
43 |
9 42
|
exlimddv |
⊢ ( 𝐵 ∈ dom recs ( 𝐹 ) → ( recs ( 𝐹 ) ↾ 𝐵 ) ∈ V ) |