| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem.1 | ⊢ 𝐴  =  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) } | 
						
							| 2 | 1 | tfrlem7 | ⊢ Fun  recs ( 𝐹 ) | 
						
							| 3 |  | funfvop | ⊢ ( ( Fun  recs ( 𝐹 )  ∧  𝐵  ∈  dom  recs ( 𝐹 ) )  →  〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  recs ( 𝐹 ) ) | 
						
							| 4 | 2 3 | mpan | ⊢ ( 𝐵  ∈  dom  recs ( 𝐹 )  →  〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  recs ( 𝐹 ) ) | 
						
							| 5 | 1 | recsfval | ⊢ recs ( 𝐹 )  =  ∪  𝐴 | 
						
							| 6 | 5 | eleq2i | ⊢ ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  recs ( 𝐹 )  ↔  〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  ∪  𝐴 ) | 
						
							| 7 |  | eluni | ⊢ ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  ∪  𝐴  ↔  ∃ 𝑔 ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) ) | 
						
							| 8 | 6 7 | bitri | ⊢ ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  recs ( 𝐹 )  ↔  ∃ 𝑔 ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) ) | 
						
							| 9 | 4 8 | sylib | ⊢ ( 𝐵  ∈  dom  recs ( 𝐹 )  →  ∃ 𝑔 ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) ) | 
						
							| 10 |  | simprr | ⊢ ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  →  𝑔  ∈  𝐴 ) | 
						
							| 11 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 12 | 1 11 | tfrlem3a | ⊢ ( 𝑔  ∈  𝐴  ↔  ∃ 𝑧  ∈  On ( 𝑔  Fn  𝑧  ∧  ∀ 𝑎  ∈  𝑧 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  𝑎 ) ) ) ) | 
						
							| 13 | 10 12 | sylib | ⊢ ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  →  ∃ 𝑧  ∈  On ( 𝑔  Fn  𝑧  ∧  ∀ 𝑎  ∈  𝑧 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  𝑎 ) ) ) ) | 
						
							| 14 | 2 | a1i | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  Fun  recs ( 𝐹 ) ) | 
						
							| 15 |  | simplrr | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  𝑔  ∈  𝐴 ) | 
						
							| 16 |  | elssuni | ⊢ ( 𝑔  ∈  𝐴  →  𝑔  ⊆  ∪  𝐴 ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  𝑔  ⊆  ∪  𝐴 ) | 
						
							| 18 | 17 5 | sseqtrrdi | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  𝑔  ⊆  recs ( 𝐹 ) ) | 
						
							| 19 |  | fndm | ⊢ ( 𝑔  Fn  𝑧  →  dom  𝑔  =  𝑧 ) | 
						
							| 20 | 19 | ad2antll | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  dom  𝑔  =  𝑧 ) | 
						
							| 21 |  | simprl | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  𝑧  ∈  On ) | 
						
							| 22 | 20 21 | eqeltrd | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  dom  𝑔  ∈  On ) | 
						
							| 23 |  | eloni | ⊢ ( dom  𝑔  ∈  On  →  Ord  dom  𝑔 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  Ord  dom  𝑔 ) | 
						
							| 25 |  | simpll | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  𝐵  ∈  dom  recs ( 𝐹 ) ) | 
						
							| 26 |  | fvexd | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  ( recs ( 𝐹 ) ‘ 𝐵 )  ∈  V ) | 
						
							| 27 |  | simplrl | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔 ) | 
						
							| 28 |  | df-br | ⊢ ( 𝐵 𝑔 ( recs ( 𝐹 ) ‘ 𝐵 )  ↔  〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔 ) | 
						
							| 29 | 27 28 | sylibr | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  𝐵 𝑔 ( recs ( 𝐹 ) ‘ 𝐵 ) ) | 
						
							| 30 |  | breldmg | ⊢ ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( recs ( 𝐹 ) ‘ 𝐵 )  ∈  V  ∧  𝐵 𝑔 ( recs ( 𝐹 ) ‘ 𝐵 ) )  →  𝐵  ∈  dom  𝑔 ) | 
						
							| 31 | 25 26 29 30 | syl3anc | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  𝐵  ∈  dom  𝑔 ) | 
						
							| 32 |  | ordelss | ⊢ ( ( Ord  dom  𝑔  ∧  𝐵  ∈  dom  𝑔 )  →  𝐵  ⊆  dom  𝑔 ) | 
						
							| 33 | 24 31 32 | syl2anc | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  𝐵  ⊆  dom  𝑔 ) | 
						
							| 34 |  | fun2ssres | ⊢ ( ( Fun  recs ( 𝐹 )  ∧  𝑔  ⊆  recs ( 𝐹 )  ∧  𝐵  ⊆  dom  𝑔 )  →  ( recs ( 𝐹 )  ↾  𝐵 )  =  ( 𝑔  ↾  𝐵 ) ) | 
						
							| 35 | 14 18 33 34 | syl3anc | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  ( recs ( 𝐹 )  ↾  𝐵 )  =  ( 𝑔  ↾  𝐵 ) ) | 
						
							| 36 | 11 | resex | ⊢ ( 𝑔  ↾  𝐵 )  ∈  V | 
						
							| 37 | 36 | a1i | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  ( 𝑔  ↾  𝐵 )  ∈  V ) | 
						
							| 38 | 35 37 | eqeltrd | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  ( 𝑧  ∈  On  ∧  𝑔  Fn  𝑧 ) )  →  ( recs ( 𝐹 )  ↾  𝐵 )  ∈  V ) | 
						
							| 39 | 38 | expr | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  𝑧  ∈  On )  →  ( 𝑔  Fn  𝑧  →  ( recs ( 𝐹 )  ↾  𝐵 )  ∈  V ) ) | 
						
							| 40 | 39 | adantrd | ⊢ ( ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  ∧  𝑧  ∈  On )  →  ( ( 𝑔  Fn  𝑧  ∧  ∀ 𝑎  ∈  𝑧 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  𝑎 ) ) )  →  ( recs ( 𝐹 )  ↾  𝐵 )  ∈  V ) ) | 
						
							| 41 | 40 | rexlimdva | ⊢ ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  →  ( ∃ 𝑧  ∈  On ( 𝑔  Fn  𝑧  ∧  ∀ 𝑎  ∈  𝑧 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  𝑎 ) ) )  →  ( recs ( 𝐹 )  ↾  𝐵 )  ∈  V ) ) | 
						
							| 42 | 13 41 | mpd | ⊢ ( ( 𝐵  ∈  dom  recs ( 𝐹 )  ∧  ( 〈 𝐵 ,  ( recs ( 𝐹 ) ‘ 𝐵 ) 〉  ∈  𝑔  ∧  𝑔  ∈  𝐴 ) )  →  ( recs ( 𝐹 )  ↾  𝐵 )  ∈  V ) | 
						
							| 43 | 9 42 | exlimddv | ⊢ ( 𝐵  ∈  dom  recs ( 𝐹 )  →  ( recs ( 𝐹 )  ↾  𝐵 )  ∈  V ) |