Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐵 ∈ dom topGen ) |
2 |
|
eltg2b |
⊢ ( 𝐵 ∈ dom topGen → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
3 |
|
eleq1 |
⊢ ( 𝑦 = 𝐶 → ( 𝑦 ∈ 𝑥 ↔ 𝐶 ∈ 𝑥 ) ) |
4 |
3
|
anbi1d |
⊢ ( 𝑦 = 𝐶 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
5 |
4
|
rexbidv |
⊢ ( 𝑦 = 𝐶 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
6 |
5
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝐶 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 ( 𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
7 |
2 6
|
syl6bi |
⊢ ( 𝐵 ∈ dom topGen → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ( 𝐶 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 ( 𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) ) |
8 |
1 7
|
mpcom |
⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ( 𝐶 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 ( 𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
9 |
8
|
imp |
⊢ ( ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐵 ( 𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) |