Metamath Proof Explorer


Theorem tg2

Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006)

Ref Expression
Assertion tg2 ( ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ∧ 𝐶𝐴 ) → ∃ 𝑥𝐵 ( 𝐶𝑥𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 elfvdm ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐵 ∈ dom topGen )
2 eltg2b ( 𝐵 ∈ dom topGen → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑦𝐴𝑥𝐵 ( 𝑦𝑥𝑥𝐴 ) ) )
3 eleq1 ( 𝑦 = 𝐶 → ( 𝑦𝑥𝐶𝑥 ) )
4 3 anbi1d ( 𝑦 = 𝐶 → ( ( 𝑦𝑥𝑥𝐴 ) ↔ ( 𝐶𝑥𝑥𝐴 ) ) )
5 4 rexbidv ( 𝑦 = 𝐶 → ( ∃ 𝑥𝐵 ( 𝑦𝑥𝑥𝐴 ) ↔ ∃ 𝑥𝐵 ( 𝐶𝑥𝑥𝐴 ) ) )
6 5 rspccv ( ∀ 𝑦𝐴𝑥𝐵 ( 𝑦𝑥𝑥𝐴 ) → ( 𝐶𝐴 → ∃ 𝑥𝐵 ( 𝐶𝑥𝑥𝐴 ) ) )
7 2 6 syl6bi ( 𝐵 ∈ dom topGen → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ( 𝐶𝐴 → ∃ 𝑥𝐵 ( 𝐶𝑥𝑥𝐴 ) ) ) )
8 1 7 mpcom ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ( 𝐶𝐴 → ∃ 𝑥𝐵 ( 𝐶𝑥𝑥𝐴 ) ) )
9 8 imp ( ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ∧ 𝐶𝐴 ) → ∃ 𝑥𝐵 ( 𝐶𝑥𝑥𝐴 ) )