| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfvdm | ⊢ ( 𝐴  ∈  ( topGen ‘ 𝐵 )  →  𝐵  ∈  dom  topGen ) | 
						
							| 2 |  | eltg2b | ⊢ ( 𝐵  ∈  dom  topGen  →  ( 𝐴  ∈  ( topGen ‘ 𝐵 )  ↔  ∀ 𝑦  ∈  𝐴 ∃ 𝑥  ∈  𝐵 ( 𝑦  ∈  𝑥  ∧  𝑥  ⊆  𝐴 ) ) ) | 
						
							| 3 |  | eleq1 | ⊢ ( 𝑦  =  𝐶  →  ( 𝑦  ∈  𝑥  ↔  𝐶  ∈  𝑥 ) ) | 
						
							| 4 | 3 | anbi1d | ⊢ ( 𝑦  =  𝐶  →  ( ( 𝑦  ∈  𝑥  ∧  𝑥  ⊆  𝐴 )  ↔  ( 𝐶  ∈  𝑥  ∧  𝑥  ⊆  𝐴 ) ) ) | 
						
							| 5 | 4 | rexbidv | ⊢ ( 𝑦  =  𝐶  →  ( ∃ 𝑥  ∈  𝐵 ( 𝑦  ∈  𝑥  ∧  𝑥  ⊆  𝐴 )  ↔  ∃ 𝑥  ∈  𝐵 ( 𝐶  ∈  𝑥  ∧  𝑥  ⊆  𝐴 ) ) ) | 
						
							| 6 | 5 | rspccv | ⊢ ( ∀ 𝑦  ∈  𝐴 ∃ 𝑥  ∈  𝐵 ( 𝑦  ∈  𝑥  ∧  𝑥  ⊆  𝐴 )  →  ( 𝐶  ∈  𝐴  →  ∃ 𝑥  ∈  𝐵 ( 𝐶  ∈  𝑥  ∧  𝑥  ⊆  𝐴 ) ) ) | 
						
							| 7 | 2 6 | biimtrdi | ⊢ ( 𝐵  ∈  dom  topGen  →  ( 𝐴  ∈  ( topGen ‘ 𝐵 )  →  ( 𝐶  ∈  𝐴  →  ∃ 𝑥  ∈  𝐵 ( 𝐶  ∈  𝑥  ∧  𝑥  ⊆  𝐴 ) ) ) ) | 
						
							| 8 | 1 7 | mpcom | ⊢ ( 𝐴  ∈  ( topGen ‘ 𝐵 )  →  ( 𝐶  ∈  𝐴  →  ∃ 𝑥  ∈  𝐵 ( 𝐶  ∈  𝑥  ∧  𝑥  ⊆  𝐴 ) ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( 𝐴  ∈  ( topGen ‘ 𝐵 )  ∧  𝐶  ∈  𝐴 )  →  ∃ 𝑥  ∈  𝐵 ( 𝐶  ∈  𝑥  ∧  𝑥  ⊆  𝐴 ) ) |