Step |
Hyp |
Ref |
Expression |
1 |
|
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tgbtwntriv2.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
tgbtwntriv2.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
tgbtwncom.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
tgbtwncom.4 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
9 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝐺 ∈ TarskiG ) |
10 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝐵 ∈ 𝑃 ) |
11 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝑥 ∈ 𝑃 ) |
12 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) |
13 |
1 2 3 9 10 11 12
|
axtgbtwnid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝐵 = 𝑥 ) |
14 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) |
15 |
13 14
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) |
16 |
1 2 3 4 6 7
|
tgbtwntriv2 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 𝐼 𝐶 ) ) |
17 |
1 2 3 4 5 6 7 6 7 8 16
|
axtgpasch |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
18 |
15 17
|
r19.29a |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) |