Metamath Proof Explorer


Theorem tgbtwncom

Description: Betweenness commutes. Theorem 3.2 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
tkgeom.d = ( dist ‘ 𝐺 )
tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwntriv2.1 ( 𝜑𝐴𝑃 )
tgbtwntriv2.2 ( 𝜑𝐵𝑃 )
tgbtwncom.3 ( 𝜑𝐶𝑃 )
tgbtwncom.4 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
Assertion tgbtwncom ( 𝜑𝐵 ∈ ( 𝐶 𝐼 𝐴 ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
2 tkgeom.d = ( dist ‘ 𝐺 )
3 tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
4 tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
5 tgbtwntriv2.1 ( 𝜑𝐴𝑃 )
6 tgbtwntriv2.2 ( 𝜑𝐵𝑃 )
7 tgbtwncom.3 ( 𝜑𝐶𝑃 )
8 tgbtwncom.4 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
9 4 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝐺 ∈ TarskiG )
10 6 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝐵𝑃 )
11 simplr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝑥𝑃 )
12 simprl ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) )
13 1 2 3 9 10 11 12 axtgbtwnid ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝐵 = 𝑥 )
14 simprr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) )
15 13 14 eqeltrd ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) )
16 1 2 3 4 6 7 tgbtwntriv2 ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐶 ) )
17 1 2 3 4 5 6 7 6 7 8 16 axtgpasch ( 𝜑 → ∃ 𝑥𝑃 ( 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝐶 𝐼 𝐴 ) ) )
18 15 17 r19.29a ( 𝜑𝐵 ∈ ( 𝐶 𝐼 𝐴 ) )