| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tgbtwnconn1.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							tgbtwnconn1.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							tgbtwnconn1.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 4 | 
							
								
							 | 
							tgbtwnconn1.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							tgbtwnconn1.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							tgbtwnconn1.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							tgbtwnconn1.d | 
							⊢ ( 𝜑  →  𝐷  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							tgbtwnconn1.1 | 
							⊢ ( 𝜑  →  𝐴  ≠  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							tgbtwnconn1.2 | 
							⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							tgbtwnconn1.3 | 
							⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 𝐼 𝐷 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							simpld | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  𝐷  ∈  ( 𝐴 𝐼 𝑒 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  =  𝑒 )  →  𝐷  ∈  ( 𝐴 𝐼 𝑒 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  =  𝑒 )  →  𝐶  =  𝑒 )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq2d | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  =  𝑒 )  →  ( 𝐴 𝐼 𝐶 )  =  ( 𝐴 𝐼 𝑒 ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							eleqtrrd | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  =  𝑒 )  →  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							olcd | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  =  𝑒 )  →  ( 𝐶  ∈  ( 𝐴 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  𝐶  ∈  ( 𝐴 𝐼 𝑓 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐷  =  𝑓 )  →  𝐶  ∈  ( 𝐴 𝐼 𝑓 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐷  =  𝑓 )  →  𝐷  =  𝑓 )  | 
						
						
							| 21 | 
							
								20
							 | 
							oveq2d | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐷  =  𝑓 )  →  ( 𝐴 𝐼 𝐷 )  =  ( 𝐴 𝐼 𝑓 ) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							eleqtrrd | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐷  =  𝑓 )  →  𝐶  ∈  ( 𝐴 𝐼 𝐷 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							orcd | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐷  =  𝑓 )  →  ( 𝐶  ∈  ( 𝐴 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							df-ne | 
							⊢ ( 𝐶  ≠  𝑒  ↔  ¬  𝐶  =  𝑒 )  | 
						
						
							| 25 | 
							
								3
							 | 
							ad4antr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 26 | 
							
								25
							 | 
							ad7antr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 27 | 
							
								4
							 | 
							ad4antr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  𝐴  ∈  𝑃 )  | 
						
						
							| 28 | 
							
								27
							 | 
							ad7antr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝐴  ∈  𝑃 )  | 
						
						
							| 29 | 
							
								5
							 | 
							ad4antr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  𝐵  ∈  𝑃 )  | 
						
						
							| 30 | 
							
								29
							 | 
							ad7antr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝐵  ∈  𝑃 )  | 
						
						
							| 31 | 
							
								6
							 | 
							ad4antr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  𝐶  ∈  𝑃 )  | 
						
						
							| 32 | 
							
								31
							 | 
							ad7antr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝐶  ∈  𝑃 )  | 
						
						
							| 33 | 
							
								7
							 | 
							ad4antr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  𝐷  ∈  𝑃 )  | 
						
						
							| 34 | 
							
								33
							 | 
							ad7antr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝐷  ∈  𝑃 )  | 
						
						
							| 35 | 
							
								
							 | 
							simp-11l | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝜑 )  | 
						
						
							| 36 | 
							
								35 8
							 | 
							syl | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝐴  ≠  𝐵 )  | 
						
						
							| 37 | 
							
								35 9
							 | 
							syl | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  | 
						
						
							| 38 | 
							
								35 10
							 | 
							syl | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝐵  ∈  ( 𝐴 𝐼 𝐷 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							eqid | 
							⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 )  | 
						
						
							| 40 | 
							
								
							 | 
							simp-4r | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  𝑒  ∈  𝑃 )  | 
						
						
							| 41 | 
							
								40
							 | 
							ad7antr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝑒  ∈  𝑃 )  | 
						
						
							| 42 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  𝑓  ∈  𝑃 )  | 
						
						
							| 43 | 
							
								42
							 | 
							ad7antr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝑓  ∈  𝑃 )  | 
						
						
							| 44 | 
							
								
							 | 
							simp-6r | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  ℎ  ∈  𝑃 )  | 
						
						
							| 45 | 
							
								
							 | 
							simp-4r | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝑗  ∈  𝑃 )  | 
						
						
							| 46 | 
							
								12
							 | 
							ad7antr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝐷  ∈  ( 𝐴 𝐼 𝑒 ) )  | 
						
						
							| 47 | 
							
								18
							 | 
							ad7antr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝐶  ∈  ( 𝐴 𝐼 𝑓 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							simp-5r | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							simpld | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝑒  ∈  ( 𝐴 𝐼 ℎ ) )  | 
						
						
							| 50 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							simpld | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝑓  ∈  ( 𝐴 𝐼 𝑗 ) )  | 
						
						
							| 52 | 
							
								11
							 | 
							simprd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							ad7antr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) )  | 
						
						
							| 54 | 
							
								1 39 2 26 34 41 34 32 53
							 | 
							tgcgrcomlr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  ( 𝑒 ( dist ‘ 𝐺 ) 𝐷 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) )  | 
						
						
							| 55 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ad7antr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) )  | 
						
						
							| 57 | 
							
								48
							 | 
							simprd | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) )  | 
						
						
							| 58 | 
							
								50
							 | 
							simprd | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝑥  ∈  𝑃 )  | 
						
						
							| 60 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝑥  ∈  ( 𝐶 𝐼 𝑒 ) )  | 
						
						
							| 61 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) )  | 
						
						
							| 62 | 
							
								
							 | 
							simp-7r | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝐶  ≠  𝑒 )  | 
						
						
							| 63 | 
							
								1 2 26 28 30 32 34 36 37 38 39 41 43 44 45 46 47 49 51 54 56 57 58 59 60 61 62
							 | 
							tgbtwnconn1lem3 | 
							⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝑥  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  →  𝐷  =  𝑓 )  | 
						
						
							| 64 | 
							
								1 39 2 25 27 31 42 18
							 | 
							tgbtwncom | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  𝐶  ∈  ( 𝑓 𝐼 𝐴 ) )  | 
						
						
							| 65 | 
							
								1 39 2 25 27 33 40 12
							 | 
							tgbtwncom | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  𝐷  ∈  ( 𝑒 𝐼 𝐴 ) )  | 
						
						
							| 66 | 
							
								1 39 2 25 42 40 27 31 33 64 65
							 | 
							axtgpasch | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							ad5antr | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  ∃ 𝑥  ∈  𝑃 ( 𝑥  ∈  ( 𝐶 𝐼 𝑒 )  ∧  𝑥  ∈  ( 𝐷 𝐼 𝑓 ) ) )  | 
						
						
							| 68 | 
							
								63 67
							 | 
							r19.29a | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑗  ∈  𝑃 )  ∧  ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  𝐷  =  𝑓 )  | 
						
						
							| 69 | 
							
								1 39 2 25 27 42 29 33
							 | 
							axtgsegcon | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  ∃ 𝑗  ∈  𝑃 ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  →  ∃ 𝑗  ∈  𝑃 ( 𝑓  ∈  ( 𝐴 𝐼 𝑗 )  ∧  ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) )  | 
						
						
							| 71 | 
							
								68 70
							 | 
							r19.29a | 
							⊢ ( ( ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  ∧  ℎ  ∈  𝑃 )  ∧  ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  →  𝐷  =  𝑓 )  | 
						
						
							| 72 | 
							
								1 39 2 25 27 40 29 31
							 | 
							axtgsegcon | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  ∃ ℎ  ∈  𝑃 ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  →  ∃ ℎ  ∈  𝑃 ( 𝑒  ∈  ( 𝐴 𝐼 ℎ )  ∧  ( 𝑒 ( dist ‘ 𝐺 ) ℎ )  =  ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) )  | 
						
						
							| 74 | 
							
								71 73
							 | 
							r19.29a | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  ∧  𝐶  ≠  𝑒 )  →  𝐷  =  𝑓 )  | 
						
						
							| 75 | 
							
								74
							 | 
							ex | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  ( 𝐶  ≠  𝑒  →  𝐷  =  𝑓 ) )  | 
						
						
							| 76 | 
							
								24 75
							 | 
							biimtrrid | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  ( ¬  𝐶  =  𝑒  →  𝐷  =  𝑓 ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							orrd | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  ( 𝐶  =  𝑒  ∨  𝐷  =  𝑓 ) )  | 
						
						
							| 78 | 
							
								17 23 77
							 | 
							mpjaodan | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  ∧  𝑓  ∈  𝑃 )  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  →  ( 𝐶  ∈  ( 𝐴 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) ) )  | 
						
						
							| 79 | 
							
								1 39 2 3 4 6 6 7
							 | 
							axtgsegcon | 
							⊢ ( 𝜑  →  ∃ 𝑓  ∈  𝑃 ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  →  ∃ 𝑓  ∈  𝑃 ( 𝐶  ∈  ( 𝐴 𝐼 𝑓 )  ∧  ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 )  =  ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) )  | 
						
						
							| 81 | 
							
								78 80
							 | 
							r19.29a | 
							⊢ ( ( ( 𝜑  ∧  𝑒  ∈  𝑃 )  ∧  ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  →  ( 𝐶  ∈  ( 𝐴 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) ) )  | 
						
						
							| 82 | 
							
								1 39 2 3 4 7 7 6
							 | 
							axtgsegcon | 
							⊢ ( 𝜑  →  ∃ 𝑒  ∈  𝑃 ( 𝐷  ∈  ( 𝐴 𝐼 𝑒 )  ∧  ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 )  =  ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) )  | 
						
						
							| 83 | 
							
								81 82
							 | 
							r19.29a | 
							⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 𝐼 𝐷 )  ∨  𝐷  ∈  ( 𝐴 𝐼 𝐶 ) ) )  |