Description: Lemma for tgbtwnconn1 . (Contributed by Thierry Arnoux, 30-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgbtwnconn1.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
tgbtwnconn1.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | ||
tgbtwnconn1.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | ||
tgbtwnconn1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | ||
tgbtwnconn1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | ||
tgbtwnconn1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) | ||
tgbtwnconn1.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) | ||
tgbtwnconn1.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
tgbtwnconn1.2 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) | ||
tgbtwnconn1.3 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) | ||
tgbtwnconn1.m | ⊢ − = ( dist ‘ 𝐺 ) | ||
tgbtwnconn1.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) | ||
tgbtwnconn1.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) | ||
tgbtwnconn1.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑃 ) | ||
tgbtwnconn1.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑃 ) | ||
tgbtwnconn1.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 𝐼 𝐸 ) ) | ||
tgbtwnconn1.5 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐹 ) ) | ||
tgbtwnconn1.6 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝐴 𝐼 𝐻 ) ) | ||
tgbtwnconn1.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 𝐼 𝐽 ) ) | ||
tgbtwnconn1.8 | ⊢ ( 𝜑 → ( 𝐸 − 𝐷 ) = ( 𝐶 − 𝐷 ) ) | ||
tgbtwnconn1.9 | ⊢ ( 𝜑 → ( 𝐶 − 𝐹 ) = ( 𝐶 − 𝐷 ) ) | ||
tgbtwnconn1.10 | ⊢ ( 𝜑 → ( 𝐸 − 𝐻 ) = ( 𝐵 − 𝐶 ) ) | ||
tgbtwnconn1.11 | ⊢ ( 𝜑 → ( 𝐹 − 𝐽 ) = ( 𝐵 − 𝐷 ) ) | ||
Assertion | tgbtwnconn1lem1 | ⊢ ( 𝜑 → 𝐻 = 𝐽 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwnconn1.p | ⊢ 𝑃 = ( Base ‘ 𝐺 ) | |
2 | tgbtwnconn1.i | ⊢ 𝐼 = ( Itv ‘ 𝐺 ) | |
3 | tgbtwnconn1.g | ⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) | |
4 | tgbtwnconn1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) | |
5 | tgbtwnconn1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) | |
6 | tgbtwnconn1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) | |
7 | tgbtwnconn1.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) | |
8 | tgbtwnconn1.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
9 | tgbtwnconn1.2 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) | |
10 | tgbtwnconn1.3 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) | |
11 | tgbtwnconn1.m | ⊢ − = ( dist ‘ 𝐺 ) | |
12 | tgbtwnconn1.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) | |
13 | tgbtwnconn1.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) | |
14 | tgbtwnconn1.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑃 ) | |
15 | tgbtwnconn1.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑃 ) | |
16 | tgbtwnconn1.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 𝐼 𝐸 ) ) | |
17 | tgbtwnconn1.5 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐹 ) ) | |
18 | tgbtwnconn1.6 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝐴 𝐼 𝐻 ) ) | |
19 | tgbtwnconn1.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 𝐼 𝐽 ) ) | |
20 | tgbtwnconn1.8 | ⊢ ( 𝜑 → ( 𝐸 − 𝐷 ) = ( 𝐶 − 𝐷 ) ) | |
21 | tgbtwnconn1.9 | ⊢ ( 𝜑 → ( 𝐶 − 𝐹 ) = ( 𝐶 − 𝐷 ) ) | |
22 | tgbtwnconn1.10 | ⊢ ( 𝜑 → ( 𝐸 − 𝐻 ) = ( 𝐵 − 𝐶 ) ) | |
23 | tgbtwnconn1.11 | ⊢ ( 𝜑 → ( 𝐹 − 𝐽 ) = ( 𝐵 − 𝐷 ) ) | |
24 | 1 11 2 3 4 5 7 12 10 16 | tgbtwnexch | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐸 ) ) |
25 | 1 11 2 3 4 5 12 14 24 18 | tgbtwnexch | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐻 ) ) |
26 | 1 11 2 3 4 5 6 13 9 17 | tgbtwnexch | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐹 ) ) |
27 | 1 11 2 3 4 5 13 15 26 19 | tgbtwnexch | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐽 ) ) |
28 | 1 11 2 3 4 5 12 14 24 18 | tgbtwnexch3 | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝐵 𝐼 𝐻 ) ) |
29 | 1 11 2 3 4 6 13 15 17 19 | tgbtwnexch | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐽 ) ) |
30 | 1 11 2 3 4 5 6 15 9 29 | tgbtwnexch3 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 𝐼 𝐽 ) ) |
31 | 1 11 2 3 5 6 15 30 | tgbtwncom | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐽 𝐼 𝐵 ) ) |
32 | 1 11 2 3 4 5 7 12 10 16 | tgbtwnexch3 | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐵 𝐼 𝐸 ) ) |
33 | 1 11 2 3 4 6 13 15 17 19 | tgbtwnexch3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 𝐼 𝐽 ) ) |
34 | 1 11 2 3 6 13 15 33 | tgbtwncom | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 𝐼 𝐶 ) ) |
35 | 1 11 2 3 15 13 | axtgcgrrflx | ⊢ ( 𝜑 → ( 𝐽 − 𝐹 ) = ( 𝐹 − 𝐽 ) ) |
36 | 35 23 | eqtr2d | ⊢ ( 𝜑 → ( 𝐵 − 𝐷 ) = ( 𝐽 − 𝐹 ) ) |
37 | 20 21 | eqtr4d | ⊢ ( 𝜑 → ( 𝐸 − 𝐷 ) = ( 𝐶 − 𝐹 ) ) |
38 | 1 11 2 3 12 7 6 13 37 | tgcgrcomlr | ⊢ ( 𝜑 → ( 𝐷 − 𝐸 ) = ( 𝐹 − 𝐶 ) ) |
39 | 1 11 2 3 5 7 12 15 13 6 32 34 36 38 | tgcgrextend | ⊢ ( 𝜑 → ( 𝐵 − 𝐸 ) = ( 𝐽 − 𝐶 ) ) |
40 | 1 11 2 3 12 14 5 6 22 | tgcgrcomr | ⊢ ( 𝜑 → ( 𝐸 − 𝐻 ) = ( 𝐶 − 𝐵 ) ) |
41 | 1 11 2 3 5 12 14 15 6 5 28 31 39 40 | tgcgrextend | ⊢ ( 𝜑 → ( 𝐵 − 𝐻 ) = ( 𝐽 − 𝐵 ) ) |
42 | 1 11 2 3 5 15 | axtgcgrrflx | ⊢ ( 𝜑 → ( 𝐵 − 𝐽 ) = ( 𝐽 − 𝐵 ) ) |
43 | 1 11 2 3 5 15 5 4 14 15 8 25 27 41 42 | tgsegconeq | ⊢ ( 𝜑 → 𝐻 = 𝐽 ) |