Metamath Proof Explorer


Theorem tgbtwnconn1lem1

Description: Lemma for tgbtwnconn1 . (Contributed by Thierry Arnoux, 30-Apr-2019)

Ref Expression
Hypotheses tgbtwnconn1.p 𝑃 = ( Base ‘ 𝐺 )
tgbtwnconn1.i 𝐼 = ( Itv ‘ 𝐺 )
tgbtwnconn1.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwnconn1.a ( 𝜑𝐴𝑃 )
tgbtwnconn1.b ( 𝜑𝐵𝑃 )
tgbtwnconn1.c ( 𝜑𝐶𝑃 )
tgbtwnconn1.d ( 𝜑𝐷𝑃 )
tgbtwnconn1.1 ( 𝜑𝐴𝐵 )
tgbtwnconn1.2 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
tgbtwnconn1.3 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
tgbtwnconn1.m = ( dist ‘ 𝐺 )
tgbtwnconn1.e ( 𝜑𝐸𝑃 )
tgbtwnconn1.f ( 𝜑𝐹𝑃 )
tgbtwnconn1.h ( 𝜑𝐻𝑃 )
tgbtwnconn1.j ( 𝜑𝐽𝑃 )
tgbtwnconn1.4 ( 𝜑𝐷 ∈ ( 𝐴 𝐼 𝐸 ) )
tgbtwnconn1.5 ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐹 ) )
tgbtwnconn1.6 ( 𝜑𝐸 ∈ ( 𝐴 𝐼 𝐻 ) )
tgbtwnconn1.7 ( 𝜑𝐹 ∈ ( 𝐴 𝐼 𝐽 ) )
tgbtwnconn1.8 ( 𝜑 → ( 𝐸 𝐷 ) = ( 𝐶 𝐷 ) )
tgbtwnconn1.9 ( 𝜑 → ( 𝐶 𝐹 ) = ( 𝐶 𝐷 ) )
tgbtwnconn1.10 ( 𝜑 → ( 𝐸 𝐻 ) = ( 𝐵 𝐶 ) )
tgbtwnconn1.11 ( 𝜑 → ( 𝐹 𝐽 ) = ( 𝐵 𝐷 ) )
Assertion tgbtwnconn1lem1 ( 𝜑𝐻 = 𝐽 )

Proof

Step Hyp Ref Expression
1 tgbtwnconn1.p 𝑃 = ( Base ‘ 𝐺 )
2 tgbtwnconn1.i 𝐼 = ( Itv ‘ 𝐺 )
3 tgbtwnconn1.g ( 𝜑𝐺 ∈ TarskiG )
4 tgbtwnconn1.a ( 𝜑𝐴𝑃 )
5 tgbtwnconn1.b ( 𝜑𝐵𝑃 )
6 tgbtwnconn1.c ( 𝜑𝐶𝑃 )
7 tgbtwnconn1.d ( 𝜑𝐷𝑃 )
8 tgbtwnconn1.1 ( 𝜑𝐴𝐵 )
9 tgbtwnconn1.2 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
10 tgbtwnconn1.3 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
11 tgbtwnconn1.m = ( dist ‘ 𝐺 )
12 tgbtwnconn1.e ( 𝜑𝐸𝑃 )
13 tgbtwnconn1.f ( 𝜑𝐹𝑃 )
14 tgbtwnconn1.h ( 𝜑𝐻𝑃 )
15 tgbtwnconn1.j ( 𝜑𝐽𝑃 )
16 tgbtwnconn1.4 ( 𝜑𝐷 ∈ ( 𝐴 𝐼 𝐸 ) )
17 tgbtwnconn1.5 ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐹 ) )
18 tgbtwnconn1.6 ( 𝜑𝐸 ∈ ( 𝐴 𝐼 𝐻 ) )
19 tgbtwnconn1.7 ( 𝜑𝐹 ∈ ( 𝐴 𝐼 𝐽 ) )
20 tgbtwnconn1.8 ( 𝜑 → ( 𝐸 𝐷 ) = ( 𝐶 𝐷 ) )
21 tgbtwnconn1.9 ( 𝜑 → ( 𝐶 𝐹 ) = ( 𝐶 𝐷 ) )
22 tgbtwnconn1.10 ( 𝜑 → ( 𝐸 𝐻 ) = ( 𝐵 𝐶 ) )
23 tgbtwnconn1.11 ( 𝜑 → ( 𝐹 𝐽 ) = ( 𝐵 𝐷 ) )
24 1 11 2 3 4 5 7 12 10 16 tgbtwnexch ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐸 ) )
25 1 11 2 3 4 5 12 14 24 18 tgbtwnexch ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐻 ) )
26 1 11 2 3 4 5 6 13 9 17 tgbtwnexch ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐹 ) )
27 1 11 2 3 4 5 13 15 26 19 tgbtwnexch ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐽 ) )
28 1 11 2 3 4 5 12 14 24 18 tgbtwnexch3 ( 𝜑𝐸 ∈ ( 𝐵 𝐼 𝐻 ) )
29 1 11 2 3 4 6 13 15 17 19 tgbtwnexch ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐽 ) )
30 1 11 2 3 4 5 6 15 9 29 tgbtwnexch3 ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐽 ) )
31 1 11 2 3 5 6 15 30 tgbtwncom ( 𝜑𝐶 ∈ ( 𝐽 𝐼 𝐵 ) )
32 1 11 2 3 4 5 7 12 10 16 tgbtwnexch3 ( 𝜑𝐷 ∈ ( 𝐵 𝐼 𝐸 ) )
33 1 11 2 3 4 6 13 15 17 19 tgbtwnexch3 ( 𝜑𝐹 ∈ ( 𝐶 𝐼 𝐽 ) )
34 1 11 2 3 6 13 15 33 tgbtwncom ( 𝜑𝐹 ∈ ( 𝐽 𝐼 𝐶 ) )
35 1 11 2 3 15 13 axtgcgrrflx ( 𝜑 → ( 𝐽 𝐹 ) = ( 𝐹 𝐽 ) )
36 35 23 eqtr2d ( 𝜑 → ( 𝐵 𝐷 ) = ( 𝐽 𝐹 ) )
37 20 21 eqtr4d ( 𝜑 → ( 𝐸 𝐷 ) = ( 𝐶 𝐹 ) )
38 1 11 2 3 12 7 6 13 37 tgcgrcomlr ( 𝜑 → ( 𝐷 𝐸 ) = ( 𝐹 𝐶 ) )
39 1 11 2 3 5 7 12 15 13 6 32 34 36 38 tgcgrextend ( 𝜑 → ( 𝐵 𝐸 ) = ( 𝐽 𝐶 ) )
40 1 11 2 3 12 14 5 6 22 tgcgrcomr ( 𝜑 → ( 𝐸 𝐻 ) = ( 𝐶 𝐵 ) )
41 1 11 2 3 5 12 14 15 6 5 28 31 39 40 tgcgrextend ( 𝜑 → ( 𝐵 𝐻 ) = ( 𝐽 𝐵 ) )
42 1 11 2 3 5 15 axtgcgrrflx ( 𝜑 → ( 𝐵 𝐽 ) = ( 𝐽 𝐵 ) )
43 1 11 2 3 5 15 5 4 14 15 8 25 27 41 42 tgsegconeq ( 𝜑𝐻 = 𝐽 )