Step |
Hyp |
Ref |
Expression |
1 |
|
tgbtwnconn1.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tgbtwnconn1.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
tgbtwnconn1.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
4 |
|
tgbtwnconn1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
5 |
|
tgbtwnconn1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
6 |
|
tgbtwnconn1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
7 |
|
tgbtwnconn1.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
8 |
|
tgbtwnconn1.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
9 |
|
tgbtwnconn1.2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
10 |
|
tgbtwnconn1.3 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
11 |
|
tgbtwnconn1.m |
⊢ − = ( dist ‘ 𝐺 ) |
12 |
|
tgbtwnconn1.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
13 |
|
tgbtwnconn1.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
14 |
|
tgbtwnconn1.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑃 ) |
15 |
|
tgbtwnconn1.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑃 ) |
16 |
|
tgbtwnconn1.4 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 𝐼 𝐸 ) ) |
17 |
|
tgbtwnconn1.5 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐹 ) ) |
18 |
|
tgbtwnconn1.6 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐴 𝐼 𝐻 ) ) |
19 |
|
tgbtwnconn1.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 𝐼 𝐽 ) ) |
20 |
|
tgbtwnconn1.8 |
⊢ ( 𝜑 → ( 𝐸 − 𝐷 ) = ( 𝐶 − 𝐷 ) ) |
21 |
|
tgbtwnconn1.9 |
⊢ ( 𝜑 → ( 𝐶 − 𝐹 ) = ( 𝐶 − 𝐷 ) ) |
22 |
|
tgbtwnconn1.10 |
⊢ ( 𝜑 → ( 𝐸 − 𝐻 ) = ( 𝐵 − 𝐶 ) ) |
23 |
|
tgbtwnconn1.11 |
⊢ ( 𝜑 → ( 𝐹 − 𝐽 ) = ( 𝐵 − 𝐷 ) ) |
24 |
1 11 2 3 4 5 7 12 10 16
|
tgbtwnexch |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐸 ) ) |
25 |
1 11 2 3 4 5 12 14 24 18
|
tgbtwnexch |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐻 ) ) |
26 |
1 11 2 3 4 5 6 13 9 17
|
tgbtwnexch |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐹 ) ) |
27 |
1 11 2 3 4 5 13 15 26 19
|
tgbtwnexch |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐽 ) ) |
28 |
1 11 2 3 4 5 12 14 24 18
|
tgbtwnexch3 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐵 𝐼 𝐻 ) ) |
29 |
1 11 2 3 4 6 13 15 17 19
|
tgbtwnexch |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐽 ) ) |
30 |
1 11 2 3 4 5 6 15 9 29
|
tgbtwnexch3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 𝐼 𝐽 ) ) |
31 |
1 11 2 3 5 6 15 30
|
tgbtwncom |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐽 𝐼 𝐵 ) ) |
32 |
1 11 2 3 4 5 7 12 10 16
|
tgbtwnexch3 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐵 𝐼 𝐸 ) ) |
33 |
1 11 2 3 4 6 13 15 17 19
|
tgbtwnexch3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 𝐼 𝐽 ) ) |
34 |
1 11 2 3 6 13 15 33
|
tgbtwncom |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 𝐼 𝐶 ) ) |
35 |
1 11 2 3 15 13
|
axtgcgrrflx |
⊢ ( 𝜑 → ( 𝐽 − 𝐹 ) = ( 𝐹 − 𝐽 ) ) |
36 |
35 23
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐵 − 𝐷 ) = ( 𝐽 − 𝐹 ) ) |
37 |
20 21
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐸 − 𝐷 ) = ( 𝐶 − 𝐹 ) ) |
38 |
1 11 2 3 12 7 6 13 37
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐷 − 𝐸 ) = ( 𝐹 − 𝐶 ) ) |
39 |
1 11 2 3 5 7 12 15 13 6 32 34 36 38
|
tgcgrextend |
⊢ ( 𝜑 → ( 𝐵 − 𝐸 ) = ( 𝐽 − 𝐶 ) ) |
40 |
1 11 2 3 12 14 5 6 22
|
tgcgrcomr |
⊢ ( 𝜑 → ( 𝐸 − 𝐻 ) = ( 𝐶 − 𝐵 ) ) |
41 |
1 11 2 3 5 12 14 15 6 5 28 31 39 40
|
tgcgrextend |
⊢ ( 𝜑 → ( 𝐵 − 𝐻 ) = ( 𝐽 − 𝐵 ) ) |
42 |
1 11 2 3 5 15
|
axtgcgrrflx |
⊢ ( 𝜑 → ( 𝐵 − 𝐽 ) = ( 𝐽 − 𝐵 ) ) |
43 |
1 11 2 3 5 15 5 4 14 15 8 25 27 41 42
|
tgsegconeq |
⊢ ( 𝜑 → 𝐻 = 𝐽 ) |