Metamath Proof Explorer


Theorem tgbtwnconn2

Description: Another connectivity law for betweenness. Theorem 5.2 of Schwabhauser p. 41. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tgbtwnconn.p 𝑃 = ( Base ‘ 𝐺 )
tgbtwnconn.i 𝐼 = ( Itv ‘ 𝐺 )
tgbtwnconn.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwnconn.a ( 𝜑𝐴𝑃 )
tgbtwnconn.b ( 𝜑𝐵𝑃 )
tgbtwnconn.c ( 𝜑𝐶𝑃 )
tgbtwnconn.d ( 𝜑𝐷𝑃 )
tgbtwnconn2.1 ( 𝜑𝐴𝐵 )
tgbtwnconn2.2 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
tgbtwnconn2.3 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
Assertion tgbtwnconn2 ( 𝜑 → ( 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 tgbtwnconn.p 𝑃 = ( Base ‘ 𝐺 )
2 tgbtwnconn.i 𝐼 = ( Itv ‘ 𝐺 )
3 tgbtwnconn.g ( 𝜑𝐺 ∈ TarskiG )
4 tgbtwnconn.a ( 𝜑𝐴𝑃 )
5 tgbtwnconn.b ( 𝜑𝐵𝑃 )
6 tgbtwnconn.c ( 𝜑𝐶𝑃 )
7 tgbtwnconn.d ( 𝜑𝐷𝑃 )
8 tgbtwnconn2.1 ( 𝜑𝐴𝐵 )
9 tgbtwnconn2.2 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
10 tgbtwnconn2.3 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
11 eqid ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 )
12 3 adantr ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐺 ∈ TarskiG )
13 4 adantr ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐴𝑃 )
14 5 adantr ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐵𝑃 )
15 6 adantr ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐶𝑃 )
16 7 adantr ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐷𝑃 )
17 9 adantr ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
18 simpr ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) )
19 1 11 2 12 13 14 15 16 17 18 tgbtwnexch3 ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) )
20 19 orcd ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → ( 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) )
21 3 adantr ( ( 𝜑𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG )
22 4 adantr ( ( 𝜑𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐴𝑃 )
23 5 adantr ( ( 𝜑𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵𝑃 )
24 7 adantr ( ( 𝜑𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐷𝑃 )
25 6 adantr ( ( 𝜑𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐶𝑃 )
26 10 adantr ( ( 𝜑𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
27 simpr ( ( 𝜑𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) )
28 1 11 2 21 22 23 24 25 26 27 tgbtwnexch3 ( ( 𝜑𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) )
29 28 olcd ( ( 𝜑𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) )
30 1 2 3 4 5 6 7 8 9 10 tgbtwnconn1 ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) )
31 20 29 30 mpjaodan ( 𝜑 → ( 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) )