Step |
Hyp |
Ref |
Expression |
1 |
|
tgbtwnconn.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tgbtwnconn.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
tgbtwnconn.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
4 |
|
tgbtwnconn.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
5 |
|
tgbtwnconn.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
6 |
|
tgbtwnconn.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
7 |
|
tgbtwnconn.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
8 |
|
tgbtwnconn2.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
9 |
|
tgbtwnconn2.2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
10 |
|
tgbtwnconn2.3 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
11 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐺 ∈ TarskiG ) |
13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐴 ∈ 𝑃 ) |
14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐵 ∈ 𝑃 ) |
15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐶 ∈ 𝑃 ) |
16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐷 ∈ 𝑃 ) |
17 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) |
19 |
1 11 2 12 13 14 15 16 17 18
|
tgbtwnexch3 |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) |
20 |
19
|
orcd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) → ( 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ) |
21 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
22 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐴 ∈ 𝑃 ) |
23 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ 𝑃 ) |
24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐷 ∈ 𝑃 ) |
25 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
26 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) |
28 |
1 11 2 21 22 23 24 25 26 27
|
tgbtwnexch3 |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) |
29 |
28
|
olcd |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ) |
30 |
1 2 3 4 5 6 7 8 9 10
|
tgbtwnconn1 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
31 |
20 29 30
|
mpjaodan |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) ) |