Metamath Proof Explorer


Theorem tgbtwnconn22

Description: Double connectivity law for betweenness. (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Hypotheses tgbtwnconn.p 𝑃 = ( Base ‘ 𝐺 )
tgbtwnconn.i 𝐼 = ( Itv ‘ 𝐺 )
tgbtwnconn.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwnconn.a ( 𝜑𝐴𝑃 )
tgbtwnconn.b ( 𝜑𝐵𝑃 )
tgbtwnconn.c ( 𝜑𝐶𝑃 )
tgbtwnconn.d ( 𝜑𝐷𝑃 )
tgbtwnconn22.e ( 𝜑𝐸𝑃 )
tgbtwnconn22.1 ( 𝜑𝐴𝐵 )
tgbtwnconn22.2 ( 𝜑𝐶𝐵 )
tgbtwnconn22.3 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
tgbtwnconn22.4 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
tgbtwnconn22.5 ( 𝜑𝐵 ∈ ( 𝐶 𝐼 𝐸 ) )
Assertion tgbtwnconn22 ( 𝜑𝐵 ∈ ( 𝐷 𝐼 𝐸 ) )

Proof

Step Hyp Ref Expression
1 tgbtwnconn.p 𝑃 = ( Base ‘ 𝐺 )
2 tgbtwnconn.i 𝐼 = ( Itv ‘ 𝐺 )
3 tgbtwnconn.g ( 𝜑𝐺 ∈ TarskiG )
4 tgbtwnconn.a ( 𝜑𝐴𝑃 )
5 tgbtwnconn.b ( 𝜑𝐵𝑃 )
6 tgbtwnconn.c ( 𝜑𝐶𝑃 )
7 tgbtwnconn.d ( 𝜑𝐷𝑃 )
8 tgbtwnconn22.e ( 𝜑𝐸𝑃 )
9 tgbtwnconn22.1 ( 𝜑𝐴𝐵 )
10 tgbtwnconn22.2 ( 𝜑𝐶𝐵 )
11 tgbtwnconn22.3 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
12 tgbtwnconn22.4 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
13 tgbtwnconn22.5 ( 𝜑𝐵 ∈ ( 𝐶 𝐼 𝐸 ) )
14 eqid ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 )
15 3 adantr ( ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐺 ∈ TarskiG )
16 7 adantr ( ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐷𝑃 )
17 6 adantr ( ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐶𝑃 )
18 5 adantr ( ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐵𝑃 )
19 8 adantr ( ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐸𝑃 )
20 10 adantr ( ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐶𝐵 )
21 simpr ( ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) )
22 1 14 2 15 18 17 16 21 tgbtwncom ( ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐶 ∈ ( 𝐷 𝐼 𝐵 ) )
23 13 adantr ( ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝐸 ) )
24 1 14 2 15 16 17 18 19 20 22 23 tgbtwnouttr2 ( ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) → 𝐵 ∈ ( 𝐷 𝐼 𝐸 ) )
25 3 adantr ( ( 𝜑𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG )
26 7 adantr ( ( 𝜑𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐷𝑃 )
27 5 adantr ( ( 𝜑𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐵𝑃 )
28 8 adantr ( ( 𝜑𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐸𝑃 )
29 6 adantr ( ( 𝜑𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐶𝑃 )
30 simpr ( ( 𝜑𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) )
31 13 adantr ( ( 𝜑𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝐸 ) )
32 1 14 2 25 29 27 28 31 tgbtwncom ( ( 𝜑𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐸 𝐼 𝐶 ) )
33 1 14 2 25 26 27 28 29 30 32 tgbtwnintr ( ( 𝜑𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐷 𝐼 𝐸 ) )
34 1 2 3 4 5 6 7 9 11 12 tgbtwnconn2 ( 𝜑 → ( 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐵 𝐼 𝐶 ) ) )
35 24 33 34 mpjaodan ( 𝜑𝐵 ∈ ( 𝐷 𝐼 𝐸 ) )