| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgbtwnconn.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tgbtwnconn.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
tgbtwnconn.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 4 |
|
tgbtwnconn.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 5 |
|
tgbtwnconn.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 6 |
|
tgbtwnconn.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 7 |
|
tgbtwnconn.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 8 |
|
tgbtwnconn3.1 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 9 |
|
tgbtwnconn3.2 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 10 |
|
tgbtwnconnln3.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
| 12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐴 ∈ 𝑃 ) |
| 13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
| 14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ 𝑃 ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 16 |
1 10 2 11 12 13 14 15
|
btwncolg1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐵 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) ) |
| 17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 18 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
| 20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 22 |
1 10 2 17 18 19 20 21
|
btwncolg3 |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐵 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) ) |
| 23 |
1 2 3 4 5 6 7 8 9
|
tgbtwnconn3 |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
| 24 |
16 22 23
|
mpjaodan |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) ) |