Metamath Proof Explorer


Theorem tgbtwndiff

Description: There is always a c distinct from B such that B lies between A and c . Theorem 3.14 of Schwabhauser p. 32. The condition "the space is of dimension 1 or more" is written here as 2 <_ ( #P ) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tgbtwndiff.p 𝑃 = ( Base ‘ 𝐺 )
tgbtwndiff.d = ( dist ‘ 𝐺 )
tgbtwndiff.i 𝐼 = ( Itv ‘ 𝐺 )
tgbtwndiff.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwndiff.a ( 𝜑𝐴𝑃 )
tgbtwndiff.b ( 𝜑𝐵𝑃 )
tgbtwndiff.l ( 𝜑 → 2 ≤ ( ♯ ‘ 𝑃 ) )
Assertion tgbtwndiff ( 𝜑 → ∃ 𝑐𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝐵𝑐 ) )

Proof

Step Hyp Ref Expression
1 tgbtwndiff.p 𝑃 = ( Base ‘ 𝐺 )
2 tgbtwndiff.d = ( dist ‘ 𝐺 )
3 tgbtwndiff.i 𝐼 = ( Itv ‘ 𝐺 )
4 tgbtwndiff.g ( 𝜑𝐺 ∈ TarskiG )
5 tgbtwndiff.a ( 𝜑𝐴𝑃 )
6 tgbtwndiff.b ( 𝜑𝐵𝑃 )
7 tgbtwndiff.l ( 𝜑 → 2 ≤ ( ♯ ‘ 𝑃 ) )
8 4 ad3antrrr ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) → 𝐺 ∈ TarskiG )
9 5 ad3antrrr ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) → 𝐴𝑃 )
10 6 ad3antrrr ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) → 𝐵𝑃 )
11 simpllr ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) → 𝑢𝑃 )
12 simplr ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) → 𝑣𝑃 )
13 1 2 3 8 9 10 11 12 axtgsegcon ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) → ∃ 𝑐𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) )
14 8 ad3antrrr ( ( ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) ∧ 𝐵 = 𝑐 ) → 𝐺 ∈ TarskiG )
15 11 ad3antrrr ( ( ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) ∧ 𝐵 = 𝑐 ) → 𝑢𝑃 )
16 12 ad3antrrr ( ( ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) ∧ 𝐵 = 𝑐 ) → 𝑣𝑃 )
17 10 ad3antrrr ( ( ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) ∧ 𝐵 = 𝑐 ) → 𝐵𝑃 )
18 simpr ( ( ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) ∧ 𝐵 = 𝑐 ) → 𝐵 = 𝑐 )
19 18 oveq2d ( ( ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) ∧ 𝐵 = 𝑐 ) → ( 𝐵 𝐵 ) = ( 𝐵 𝑐 ) )
20 simplr ( ( ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) ∧ 𝐵 = 𝑐 ) → ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) )
21 19 20 eqtr2d ( ( ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) ∧ 𝐵 = 𝑐 ) → ( 𝑢 𝑣 ) = ( 𝐵 𝐵 ) )
22 1 2 3 14 15 16 17 21 axtgcgrid ( ( ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) ∧ 𝐵 = 𝑐 ) → 𝑢 = 𝑣 )
23 simp-4r ( ( ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) ∧ 𝐵 = 𝑐 ) → 𝑢𝑣 )
24 23 neneqd ( ( ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) ∧ 𝐵 = 𝑐 ) → ¬ 𝑢 = 𝑣 )
25 22 24 pm2.65da ( ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) → ¬ 𝐵 = 𝑐 )
26 25 neqned ( ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) → 𝐵𝑐 )
27 26 ex ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) → ( ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) → 𝐵𝑐 ) )
28 27 anim2d ( ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) ∧ 𝑐𝑃 ) → ( ( 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) → ( 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝐵𝑐 ) ) )
29 28 reximdva ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) → ( ∃ 𝑐𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ∧ ( 𝐵 𝑐 ) = ( 𝑢 𝑣 ) ) → ∃ 𝑐𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝐵𝑐 ) ) )
30 13 29 mpd ( ( ( ( 𝜑𝑢𝑃 ) ∧ 𝑣𝑃 ) ∧ 𝑢𝑣 ) → ∃ 𝑐𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝐵𝑐 ) )
31 1 2 3 4 7 tglowdim1 ( 𝜑 → ∃ 𝑢𝑃𝑣𝑃 𝑢𝑣 )
32 30 31 r19.29vva ( 𝜑 → ∃ 𝑐𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝐵𝑐 ) )