Step |
Hyp |
Ref |
Expression |
1 |
|
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tgbtwnintr.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
tgbtwnintr.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
tgbtwnintr.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
tgbtwnintr.4 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
9 |
|
tgbtwnexch2.1 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
10 |
|
tgbtwnexch2.2 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐵 = 𝐶 ) |
12 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
13 |
11 12
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐺 ∈ TarskiG ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐴 ∈ 𝑃 ) |
16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ 𝑃 ) |
17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ 𝑃 ) |
18 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐷 ∈ 𝑃 ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
20 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) |
21 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
22 |
1 2 3 14 17 16 15 18 20 21
|
tgbtwnintr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) |
23 |
1 2 3 14 17 16 15 22
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
24 |
1 2 3 14 15 16 17 18 19 23 20
|
tgbtwnouttr2 |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) |
25 |
13 24
|
pm2.61dane |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) |