Metamath Proof Explorer


Theorem tgbtwnexch2

Description: Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
tkgeom.d = ( dist ‘ 𝐺 )
tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwnintr.1 ( 𝜑𝐴𝑃 )
tgbtwnintr.2 ( 𝜑𝐵𝑃 )
tgbtwnintr.3 ( 𝜑𝐶𝑃 )
tgbtwnintr.4 ( 𝜑𝐷𝑃 )
tgbtwnexch2.1 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
tgbtwnexch2.2 ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) )
Assertion tgbtwnexch2 ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
2 tkgeom.d = ( dist ‘ 𝐺 )
3 tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
4 tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
5 tgbtwnintr.1 ( 𝜑𝐴𝑃 )
6 tgbtwnintr.2 ( 𝜑𝐵𝑃 )
7 tgbtwnintr.3 ( 𝜑𝐶𝑃 )
8 tgbtwnintr.4 ( 𝜑𝐷𝑃 )
9 tgbtwnexch2.1 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
10 tgbtwnexch2.2 ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) )
11 simpr ( ( 𝜑𝐵 = 𝐶 ) → 𝐵 = 𝐶 )
12 9 adantr ( ( 𝜑𝐵 = 𝐶 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
13 11 12 eqeltrrd ( ( 𝜑𝐵 = 𝐶 ) → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) )
14 4 adantr ( ( 𝜑𝐵𝐶 ) → 𝐺 ∈ TarskiG )
15 5 adantr ( ( 𝜑𝐵𝐶 ) → 𝐴𝑃 )
16 6 adantr ( ( 𝜑𝐵𝐶 ) → 𝐵𝑃 )
17 7 adantr ( ( 𝜑𝐵𝐶 ) → 𝐶𝑃 )
18 8 adantr ( ( 𝜑𝐵𝐶 ) → 𝐷𝑃 )
19 simpr ( ( 𝜑𝐵𝐶 ) → 𝐵𝐶 )
20 10 adantr ( ( 𝜑𝐵𝐶 ) → 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) )
21 9 adantr ( ( 𝜑𝐵𝐶 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
22 1 2 3 14 17 16 15 18 20 21 tgbtwnintr ( ( 𝜑𝐵𝐶 ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) )
23 1 2 3 14 17 16 15 22 tgbtwncom ( ( 𝜑𝐵𝐶 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
24 1 2 3 14 15 16 17 18 19 23 20 tgbtwnouttr2 ( ( 𝜑𝐵𝐶 ) → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) )
25 13 24 pm2.61dane ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) )