| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tgbtwnintr.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
tgbtwnintr.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
tgbtwnintr.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
tgbtwnintr.4 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
tgbtwnexch2.1 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 10 |
|
tgbtwnexch2.2 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐵 = 𝐶 ) |
| 12 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 13 |
11 12
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐺 ∈ TarskiG ) |
| 15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐴 ∈ 𝑃 ) |
| 16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ 𝑃 ) |
| 17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ 𝑃 ) |
| 18 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐷 ∈ 𝑃 ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
| 20 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) ) |
| 21 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 22 |
1 2 3 14 17 16 15 18 20 21
|
tgbtwnintr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) |
| 23 |
1 2 3 14 17 16 15 22
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 24 |
1 2 3 14 15 16 17 18 19 23 20
|
tgbtwnouttr2 |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 25 |
13 24
|
pm2.61dane |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) |