Step |
Hyp |
Ref |
Expression |
1 |
|
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tgbtwnintr.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
tgbtwnintr.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
tgbtwnintr.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
tgbtwnintr.4 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
9 |
|
tgbtwnintr.5 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 𝐼 𝐷 ) ) |
10 |
|
tgbtwnintr.6 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐶 𝐼 𝐷 ) ) |
11 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐺 ∈ TarskiG ) |
12 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐵 ∈ 𝑃 ) |
13 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝑥 ∈ 𝑃 ) |
14 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) |
15 |
1 2 3 11 12 13 14
|
axtgbtwnid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐵 = 𝑥 ) |
16 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ) |
17 |
15 16
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
18 |
1 2 3 4 6 7 8 5 6 9 10
|
axtgpasch |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) |
19 |
17 18
|
r19.29a |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |