Metamath Proof Explorer


Theorem tgbtwnintr

Description: Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019)

Ref Expression
Hypotheses tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
tkgeom.d = ( dist ‘ 𝐺 )
tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwnintr.1 ( 𝜑𝐴𝑃 )
tgbtwnintr.2 ( 𝜑𝐵𝑃 )
tgbtwnintr.3 ( 𝜑𝐶𝑃 )
tgbtwnintr.4 ( 𝜑𝐷𝑃 )
tgbtwnintr.5 ( 𝜑𝐴 ∈ ( 𝐵 𝐼 𝐷 ) )
tgbtwnintr.6 ( 𝜑𝐵 ∈ ( 𝐶 𝐼 𝐷 ) )
Assertion tgbtwnintr ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
2 tkgeom.d = ( dist ‘ 𝐺 )
3 tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
4 tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
5 tgbtwnintr.1 ( 𝜑𝐴𝑃 )
6 tgbtwnintr.2 ( 𝜑𝐵𝑃 )
7 tgbtwnintr.3 ( 𝜑𝐶𝑃 )
8 tgbtwnintr.4 ( 𝜑𝐷𝑃 )
9 tgbtwnintr.5 ( 𝜑𝐴 ∈ ( 𝐵 𝐼 𝐷 ) )
10 tgbtwnintr.6 ( 𝜑𝐵 ∈ ( 𝐶 𝐼 𝐷 ) )
11 4 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐺 ∈ TarskiG )
12 6 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐵𝑃 )
13 simplr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝑥𝑃 )
14 simprr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) )
15 1 2 3 11 12 13 14 axtgbtwnid ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐵 = 𝑥 )
16 simprl ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) )
17 15 16 eqeltrd ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
18 1 2 3 4 6 7 8 5 6 9 10 axtgpasch ( 𝜑 → ∃ 𝑥𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) )
19 17 18 r19.29a ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )