Metamath Proof Explorer


Theorem tgbtwnswapid

Description: If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 16-Mar-2019)

Ref Expression
Hypotheses tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
tkgeom.d = ( dist ‘ 𝐺 )
tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwnswapid.1 ( 𝜑𝐴𝑃 )
tgbtwnswapid.2 ( 𝜑𝐵𝑃 )
tgbtwnswapid.3 ( 𝜑𝐶𝑃 )
tgbtwnswapid.4 ( 𝜑𝐴 ∈ ( 𝐵 𝐼 𝐶 ) )
tgbtwnswapid.5 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
Assertion tgbtwnswapid ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
2 tkgeom.d = ( dist ‘ 𝐺 )
3 tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
4 tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
5 tgbtwnswapid.1 ( 𝜑𝐴𝑃 )
6 tgbtwnswapid.2 ( 𝜑𝐵𝑃 )
7 tgbtwnswapid.3 ( 𝜑𝐶𝑃 )
8 tgbtwnswapid.4 ( 𝜑𝐴 ∈ ( 𝐵 𝐼 𝐶 ) )
9 tgbtwnswapid.5 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
10 4 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐴 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐺 ∈ TarskiG )
11 5 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐴 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐴𝑃 )
12 simplr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐴 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝑥𝑃 )
13 simprl ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐴 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 𝐼 𝐴 ) )
14 1 2 3 10 11 12 13 axtgbtwnid ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐴 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐴 = 𝑥 )
15 6 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐴 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐵𝑃 )
16 simprr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐴 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) )
17 1 2 3 10 15 12 16 axtgbtwnid ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐴 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐵 = 𝑥 )
18 14 17 eqtr4d ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐴 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) ) → 𝐴 = 𝐵 )
19 1 2 3 4 6 5 7 5 6 8 9 axtgpasch ( 𝜑 → ∃ 𝑥𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐴 ) ∧ 𝑥 ∈ ( 𝐵 𝐼 𝐵 ) ) )
20 18 19 r19.29a ( 𝜑𝐴 = 𝐵 )