Metamath Proof Explorer


Theorem tgbtwntriv1

Description: Betweenness always holds for the first endpoint. Theorem 3.3 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
tkgeom.d = ( dist ‘ 𝐺 )
tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwntriv2.1 ( 𝜑𝐴𝑃 )
tgbtwntriv2.2 ( 𝜑𝐵𝑃 )
Assertion tgbtwntriv1 ( 𝜑𝐴 ∈ ( 𝐴 𝐼 𝐵 ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
2 tkgeom.d = ( dist ‘ 𝐺 )
3 tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
4 tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
5 tgbtwntriv2.1 ( 𝜑𝐴𝑃 )
6 tgbtwntriv2.2 ( 𝜑𝐵𝑃 )
7 1 2 3 4 6 5 tgbtwntriv2 ( 𝜑𝐴 ∈ ( 𝐵 𝐼 𝐴 ) )
8 1 2 3 4 6 5 5 7 tgbtwncom ( 𝜑𝐴 ∈ ( 𝐴 𝐼 𝐵 ) )