Metamath Proof Explorer


Theorem tgbtwntriv2

Description: Betweenness always holds for the second endpoint. Theorem 3.1 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
tkgeom.d = ( dist ‘ 𝐺 )
tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwntriv2.1 ( 𝜑𝐴𝑃 )
tgbtwntriv2.2 ( 𝜑𝐵𝑃 )
Assertion tgbtwntriv2 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐵 ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
2 tkgeom.d = ( dist ‘ 𝐺 )
3 tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
4 tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
5 tgbtwntriv2.1 ( 𝜑𝐴𝑃 )
6 tgbtwntriv2.2 ( 𝜑𝐵𝑃 )
7 simprl ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐵 𝑥 ) = ( 𝐵 𝐵 ) ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) )
8 4 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐵 𝑥 ) = ( 𝐵 𝐵 ) ) → 𝐺 ∈ TarskiG )
9 6 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐵 𝑥 ) = ( 𝐵 𝐵 ) ) → 𝐵𝑃 )
10 simplr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐵 𝑥 ) = ( 𝐵 𝐵 ) ) → 𝑥𝑃 )
11 simpr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐵 𝑥 ) = ( 𝐵 𝐵 ) ) → ( 𝐵 𝑥 ) = ( 𝐵 𝐵 ) )
12 1 2 3 8 9 10 9 11 axtgcgrid ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐵 𝑥 ) = ( 𝐵 𝐵 ) ) → 𝐵 = 𝑥 )
13 12 adantrl ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐵 𝑥 ) = ( 𝐵 𝐵 ) ) ) → 𝐵 = 𝑥 )
14 13 oveq2d ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐵 𝑥 ) = ( 𝐵 𝐵 ) ) ) → ( 𝐴 𝐼 𝐵 ) = ( 𝐴 𝐼 𝑥 ) )
15 7 14 eleqtrrd ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐵 𝑥 ) = ( 𝐵 𝐵 ) ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐵 ) )
16 1 2 3 4 5 6 6 6 axtgsegcon ( 𝜑 → ∃ 𝑥𝑃 ( 𝐵 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐵 𝑥 ) = ( 𝐵 𝐵 ) ) )
17 15 16 r19.29a ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐵 ) )