Database  
				ELEMENTARY GEOMETRY  
				Tarskian Geometry  
				Congruence  
				tgcgrcomr  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Congruence commutes on the RHS. Variant of Theorem 2.5 of
         Schwabhauser  p. 27, but in a convenient form for a common case.
         (Contributed by David A. Wheeler , 29-Jun-2020) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						tkgeom.p  
						⊢  𝑃   =  ( Base ‘ 𝐺  )  
					 
					
						 
						 
						tkgeom.d  
						⊢   −    =  ( dist ‘ 𝐺  )  
					 
					
						 
						 
						tkgeom.i  
						⊢  𝐼   =  ( Itv ‘ 𝐺  )  
					 
					
						 
						 
						tkgeom.g  
						⊢  ( 𝜑   →  𝐺   ∈  TarskiG )  
					 
					
						 
						 
						tgcgrcomr.a  
						⊢  ( 𝜑   →  𝐴   ∈  𝑃  )  
					 
					
						 
						 
						tgcgrcomr.b  
						⊢  ( 𝜑   →  𝐵   ∈  𝑃  )  
					 
					
						 
						 
						tgcgrcomr.c  
						⊢  ( 𝜑   →  𝐶   ∈  𝑃  )  
					 
					
						 
						 
						tgcgrcomr.d  
						⊢  ( 𝜑   →  𝐷   ∈  𝑃  )  
					 
					
						 
						 
						tgcgrcomr.6  
						⊢  ( 𝜑   →  ( 𝐴   −   𝐵  )  =  ( 𝐶   −   𝐷  ) )  
					 
				
					 
					Assertion 
					tgcgrcomr  
					⊢   ( 𝜑   →  ( 𝐴   −   𝐵  )  =  ( 𝐷   −   𝐶  ) )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							tkgeom.p  
							⊢  𝑃   =  ( Base ‘ 𝐺  )  
						 
						
							2  
							
								
							 
							tkgeom.d  
							⊢   −    =  ( dist ‘ 𝐺  )  
						 
						
							3  
							
								
							 
							tkgeom.i  
							⊢  𝐼   =  ( Itv ‘ 𝐺  )  
						 
						
							4  
							
								
							 
							tkgeom.g  
							⊢  ( 𝜑   →  𝐺   ∈  TarskiG )  
						 
						
							5  
							
								
							 
							tgcgrcomr.a  
							⊢  ( 𝜑   →  𝐴   ∈  𝑃  )  
						 
						
							6  
							
								
							 
							tgcgrcomr.b  
							⊢  ( 𝜑   →  𝐵   ∈  𝑃  )  
						 
						
							7  
							
								
							 
							tgcgrcomr.c  
							⊢  ( 𝜑   →  𝐶   ∈  𝑃  )  
						 
						
							8  
							
								
							 
							tgcgrcomr.d  
							⊢  ( 𝜑   →  𝐷   ∈  𝑃  )  
						 
						
							9  
							
								
							 
							tgcgrcomr.6  
							⊢  ( 𝜑   →  ( 𝐴   −   𝐵  )  =  ( 𝐶   −   𝐷  ) )  
						 
						
							10  
							
								1  2  3  4  7  8 
							 
							axtgcgrrflx  
							⊢  ( 𝜑   →  ( 𝐶   −   𝐷  )  =  ( 𝐷   −   𝐶  ) )  
						 
						
							11  
							
								9  10 
							 
							eqtrd  
							⊢  ( 𝜑   →  ( 𝐴   −   𝐵  )  =  ( 𝐷   −   𝐶  ) )