Metamath Proof Explorer
		
		
		
		Description:  Congruence and equality.  (Contributed by Thierry Arnoux, 27-Aug-2019)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						tkgeom.p | 
						⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						tkgeom.d | 
						⊢  −   =  ( dist ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						tkgeom.i | 
						⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						tkgeom.g | 
						⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
					
					
						 | 
						 | 
						tgcgrcomlr.a | 
						⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
					
					
						 | 
						 | 
						tgcgrcomlr.b | 
						⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
					
					
						 | 
						 | 
						tgcgrcomlr.c | 
						⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
					
					
						 | 
						 | 
						tgcgrcomlr.d | 
						⊢ ( 𝜑  →  𝐷  ∈  𝑃 )  | 
					
					
						 | 
						 | 
						tgcgrcomlr.6 | 
						⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐶  −  𝐷 ) )  | 
					
					
						 | 
						 | 
						tgcgreq.1 | 
						⊢ ( 𝜑  →  𝐴  =  𝐵 )  | 
					
				
					 | 
					Assertion | 
					tgcgreq | 
					⊢  ( 𝜑  →  𝐶  =  𝐷 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tkgeom.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							tkgeom.d | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							tkgeom.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							tkgeom.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							tgcgrcomlr.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							tgcgrcomlr.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							tgcgrcomlr.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							tgcgrcomlr.d | 
							⊢ ( 𝜑  →  𝐷  ∈  𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							tgcgrcomlr.6 | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐶  −  𝐷 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							tgcgreq.1 | 
							⊢ ( 𝜑  →  𝐴  =  𝐵 )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							tgcgreqb | 
							⊢ ( 𝜑  →  ( 𝐴  =  𝐵  ↔  𝐶  =  𝐷 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							mpbid | 
							⊢ ( 𝜑  →  𝐶  =  𝐷 )  |