| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tkgeom.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							tkgeom.d | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							tkgeom.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							tkgeom.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							tgcgrcomlr.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							tgcgrcomlr.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							tgcgrcomlr.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							tgcgrcomlr.d | 
							⊢ ( 𝜑  →  𝐷  ∈  𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							tgcgrcomlr.6 | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐶  −  𝐷 ) )  | 
						
						
							| 10 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 11 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐶  ∈  𝑃 )  | 
						
						
							| 12 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐷  ∈  𝑃 )  | 
						
						
							| 13 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐵  ∈  𝑃 )  | 
						
						
							| 14 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐶  −  𝐷 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐴  =  𝐵 )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐵  −  𝐵 ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							eqtr3d | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝐶  −  𝐷 )  =  ( 𝐵  −  𝐵 ) )  | 
						
						
							| 18 | 
							
								1 2 3 10 11 12 13 17
							 | 
							axtgcgrid | 
							⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  𝐶  =  𝐷 )  | 
						
						
							| 19 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  𝐺  ∈  TarskiG )  | 
						
						
							| 20 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  𝐴  ∈  𝑃 )  | 
						
						
							| 21 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  𝐵  ∈  𝑃 )  | 
						
						
							| 22 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  𝐷  ∈  𝑃 )  | 
						
						
							| 23 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐶  −  𝐷 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  𝐶  =  𝐷 )  | 
						
						
							| 25 | 
							
								24
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  ( 𝐶  −  𝐷 )  =  ( 𝐷  −  𝐷 ) )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐷  −  𝐷 ) )  | 
						
						
							| 27 | 
							
								1 2 3 19 20 21 22 26
							 | 
							axtgcgrid | 
							⊢ ( ( 𝜑  ∧  𝐶  =  𝐷 )  →  𝐴  =  𝐵 )  | 
						
						
							| 28 | 
							
								18 27
							 | 
							impbida | 
							⊢ ( 𝜑  →  ( 𝐴  =  𝐵  ↔  𝐶  =  𝐷 ) )  |