Metamath Proof Explorer


Theorem tgcgreqb

Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019)

Ref Expression
Hypotheses tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
tkgeom.d = ( dist ‘ 𝐺 )
tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
tgcgrcomlr.a ( 𝜑𝐴𝑃 )
tgcgrcomlr.b ( 𝜑𝐵𝑃 )
tgcgrcomlr.c ( 𝜑𝐶𝑃 )
tgcgrcomlr.d ( 𝜑𝐷𝑃 )
tgcgrcomlr.6 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) )
Assertion tgcgreqb ( 𝜑 → ( 𝐴 = 𝐵𝐶 = 𝐷 ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
2 tkgeom.d = ( dist ‘ 𝐺 )
3 tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
4 tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
5 tgcgrcomlr.a ( 𝜑𝐴𝑃 )
6 tgcgrcomlr.b ( 𝜑𝐵𝑃 )
7 tgcgrcomlr.c ( 𝜑𝐶𝑃 )
8 tgcgrcomlr.d ( 𝜑𝐷𝑃 )
9 tgcgrcomlr.6 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) )
10 4 adantr ( ( 𝜑𝐴 = 𝐵 ) → 𝐺 ∈ TarskiG )
11 7 adantr ( ( 𝜑𝐴 = 𝐵 ) → 𝐶𝑃 )
12 8 adantr ( ( 𝜑𝐴 = 𝐵 ) → 𝐷𝑃 )
13 6 adantr ( ( 𝜑𝐴 = 𝐵 ) → 𝐵𝑃 )
14 9 adantr ( ( 𝜑𝐴 = 𝐵 ) → ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) )
15 simpr ( ( 𝜑𝐴 = 𝐵 ) → 𝐴 = 𝐵 )
16 15 oveq1d ( ( 𝜑𝐴 = 𝐵 ) → ( 𝐴 𝐵 ) = ( 𝐵 𝐵 ) )
17 14 16 eqtr3d ( ( 𝜑𝐴 = 𝐵 ) → ( 𝐶 𝐷 ) = ( 𝐵 𝐵 ) )
18 1 2 3 10 11 12 13 17 axtgcgrid ( ( 𝜑𝐴 = 𝐵 ) → 𝐶 = 𝐷 )
19 4 adantr ( ( 𝜑𝐶 = 𝐷 ) → 𝐺 ∈ TarskiG )
20 5 adantr ( ( 𝜑𝐶 = 𝐷 ) → 𝐴𝑃 )
21 6 adantr ( ( 𝜑𝐶 = 𝐷 ) → 𝐵𝑃 )
22 8 adantr ( ( 𝜑𝐶 = 𝐷 ) → 𝐷𝑃 )
23 9 adantr ( ( 𝜑𝐶 = 𝐷 ) → ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) )
24 simpr ( ( 𝜑𝐶 = 𝐷 ) → 𝐶 = 𝐷 )
25 24 oveq1d ( ( 𝜑𝐶 = 𝐷 ) → ( 𝐶 𝐷 ) = ( 𝐷 𝐷 ) )
26 23 25 eqtrd ( ( 𝜑𝐶 = 𝐷 ) → ( 𝐴 𝐵 ) = ( 𝐷 𝐷 ) )
27 1 2 3 19 20 21 22 26 axtgcgrid ( ( 𝜑𝐶 = 𝐷 ) → 𝐴 = 𝐵 )
28 18 27 impbida ( 𝜑 → ( 𝐴 = 𝐵𝐶 = 𝐷 ) )