Step |
Hyp |
Ref |
Expression |
1 |
|
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tgcgrextend.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
tgcgrextend.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
tgcgrextend.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
tgcgrextend.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
9 |
|
tgcgrextend.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
10 |
|
tgcgrextend.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
11 |
|
tgcgrextend.1 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
12 |
|
tgcgrextend.2 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) |
13 |
|
tgcgrextend.3 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
14 |
|
tgcgrextend.4 |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
17 |
16
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
18 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐺 ∈ TarskiG ) |
19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝑃 ) |
21 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐷 ∈ 𝑃 ) |
22 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐸 ∈ 𝑃 ) |
23 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
24 |
1 2 3 18 19 20 21 22 23 16
|
tgcgreq |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐷 = 𝐸 ) |
25 |
24
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐷 − 𝐹 ) = ( 𝐸 − 𝐹 ) ) |
26 |
15 17 25
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
27 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
28 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐶 ∈ 𝑃 ) |
29 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑃 ) |
30 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐹 ∈ 𝑃 ) |
31 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐷 ∈ 𝑃 ) |
32 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑃 ) |
33 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐸 ∈ 𝑃 ) |
34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
35 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
36 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) |
37 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
38 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
39 |
1 2 3 27 29 31
|
tgcgrtriv |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 − 𝐴 ) = ( 𝐷 − 𝐷 ) ) |
40 |
1 2 3 27 29 32 31 33 37
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
41 |
1 2 3 27 29 32 28 31 33 30 29 31 34 35 36 37 38 39 40
|
axtg5seg |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |
42 |
1 2 3 27 28 29 30 31 41
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
43 |
26 42
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |