Metamath Proof Explorer
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019)
|
|
Ref |
Expression |
|
Hypotheses |
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
|
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
|
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
|
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
|
|
tgcgrcomlr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
|
|
tgcgrcomlr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
|
|
tgcgrcomlr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
|
|
tgcgrcomlr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
|
|
tgcgrcomlr.6 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ) |
|
|
tgcgrneq.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
|
Assertion |
tgcgrneq |
⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tgcgrcomlr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
tgcgrcomlr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
tgcgrcomlr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
tgcgrcomlr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
9 |
|
tgcgrcomlr.6 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ) |
10 |
|
tgcgrneq.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
11 |
1 2 3 4 5 6 7 8 9
|
tgcgreqb |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ 𝐶 = 𝐷 ) ) |
12 |
11
|
necon3bid |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷 ) ) |
13 |
10 12
|
mpbid |
⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) |