| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ∪  ( topGen ‘ 𝐵 )  =  ∪  ( topGen ‘ 𝐵 ) | 
						
							| 2 | 1 | iscmp | ⊢ ( ( topGen ‘ 𝐵 )  ∈  Comp  ↔  ( ( topGen ‘ 𝐵 )  ∈  Top  ∧  ∀ 𝑦  ∈  𝒫  ( topGen ‘ 𝐵 ) ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑧 ) ) ) | 
						
							| 3 | 2 | simprbi | ⊢ ( ( topGen ‘ 𝐵 )  ∈  Comp  →  ∀ 𝑦  ∈  𝒫  ( topGen ‘ 𝐵 ) ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑧 ) ) | 
						
							| 4 |  | unitg | ⊢ ( 𝐵  ∈  TopBases  →  ∪  ( topGen ‘ 𝐵 )  =  ∪  𝐵 ) | 
						
							| 5 |  | eqtr3 | ⊢ ( ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝐵  ∧  𝑋  =  ∪  𝐵 )  →  ∪  ( topGen ‘ 𝐵 )  =  𝑋 ) | 
						
							| 6 | 4 5 | sylan | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ∪  ( topGen ‘ 𝐵 )  =  𝑋 ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑦  ↔  𝑋  =  ∪  𝑦 ) ) | 
						
							| 8 | 6 | eqeq1d | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑧  ↔  𝑋  =  ∪  𝑧 ) ) | 
						
							| 9 | 8 | rexbidv | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑧  ↔  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) | 
						
							| 10 | 7 9 | imbi12d | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑧 )  ↔  ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) | 
						
							| 11 | 10 | ralbidv | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ∀ 𝑦  ∈  𝒫  ( topGen ‘ 𝐵 ) ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑧 )  ↔  ∀ 𝑦  ∈  𝒫  ( topGen ‘ 𝐵 ) ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) | 
						
							| 12 |  | bastg | ⊢ ( 𝐵  ∈  TopBases  →  𝐵  ⊆  ( topGen ‘ 𝐵 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  𝐵  ⊆  ( topGen ‘ 𝐵 ) ) | 
						
							| 14 | 13 | sspwd | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  𝒫  𝐵  ⊆  𝒫  ( topGen ‘ 𝐵 ) ) | 
						
							| 15 |  | ssralv | ⊢ ( 𝒫  𝐵  ⊆  𝒫  ( topGen ‘ 𝐵 )  →  ( ∀ 𝑦  ∈  𝒫  ( topGen ‘ 𝐵 ) ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 )  →  ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ∀ 𝑦  ∈  𝒫  ( topGen ‘ 𝐵 ) ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 )  →  ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) | 
						
							| 17 | 11 16 | sylbid | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ∀ 𝑦  ∈  𝒫  ( topGen ‘ 𝐵 ) ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑧 )  →  ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) | 
						
							| 18 | 3 17 | syl5 | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ( topGen ‘ 𝐵 )  ∈  Comp  →  ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) | 
						
							| 19 |  | elpwi | ⊢ ( 𝑢  ∈  𝒫  ( topGen ‘ 𝐵 )  →  𝑢  ⊆  ( topGen ‘ 𝐵 ) ) | 
						
							| 20 |  | simprr | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  𝑋  =  ∪  𝑢 ) | 
						
							| 21 |  | simprl | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  𝑢  ⊆  ( topGen ‘ 𝐵 ) ) | 
						
							| 22 | 21 | sselda | ⊢ ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  𝑡  ∈  𝑢 )  →  𝑡  ∈  ( topGen ‘ 𝐵 ) ) | 
						
							| 23 | 22 | adantrr | ⊢ ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑡  ∈  𝑢  ∧  𝑦  ∈  𝑡 ) )  →  𝑡  ∈  ( topGen ‘ 𝐵 ) ) | 
						
							| 24 |  | simprr | ⊢ ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑡  ∈  𝑢  ∧  𝑦  ∈  𝑡 ) )  →  𝑦  ∈  𝑡 ) | 
						
							| 25 |  | tg2 | ⊢ ( ( 𝑡  ∈  ( topGen ‘ 𝐵 )  ∧  𝑦  ∈  𝑡 )  →  ∃ 𝑤  ∈  𝐵 ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑡 ) ) | 
						
							| 26 | 23 24 25 | syl2anc | ⊢ ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑡  ∈  𝑢  ∧  𝑦  ∈  𝑡 ) )  →  ∃ 𝑤  ∈  𝐵 ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑡 ) ) | 
						
							| 27 | 26 | expr | ⊢ ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  𝑡  ∈  𝑢 )  →  ( 𝑦  ∈  𝑡  →  ∃ 𝑤  ∈  𝐵 ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑡 ) ) ) | 
						
							| 28 | 27 | reximdva | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  ( ∃ 𝑡  ∈  𝑢 𝑦  ∈  𝑡  →  ∃ 𝑡  ∈  𝑢 ∃ 𝑤  ∈  𝐵 ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑡 ) ) ) | 
						
							| 29 |  | eluni2 | ⊢ ( 𝑦  ∈  ∪  𝑢  ↔  ∃ 𝑡  ∈  𝑢 𝑦  ∈  𝑡 ) | 
						
							| 30 |  | elunirab | ⊢ ( 𝑦  ∈  ∪  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ↔  ∃ 𝑤  ∈  𝐵 ( 𝑦  ∈  𝑤  ∧  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 ) ) | 
						
							| 31 |  | r19.42v | ⊢ ( ∃ 𝑡  ∈  𝑢 ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑡 )  ↔  ( 𝑦  ∈  𝑤  ∧  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 ) ) | 
						
							| 32 | 31 | rexbii | ⊢ ( ∃ 𝑤  ∈  𝐵 ∃ 𝑡  ∈  𝑢 ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑡 )  ↔  ∃ 𝑤  ∈  𝐵 ( 𝑦  ∈  𝑤  ∧  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 ) ) | 
						
							| 33 |  | rexcom | ⊢ ( ∃ 𝑤  ∈  𝐵 ∃ 𝑡  ∈  𝑢 ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑡 )  ↔  ∃ 𝑡  ∈  𝑢 ∃ 𝑤  ∈  𝐵 ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑡 ) ) | 
						
							| 34 | 30 32 33 | 3bitr2i | ⊢ ( 𝑦  ∈  ∪  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ↔  ∃ 𝑡  ∈  𝑢 ∃ 𝑤  ∈  𝐵 ( 𝑦  ∈  𝑤  ∧  𝑤  ⊆  𝑡 ) ) | 
						
							| 35 | 28 29 34 | 3imtr4g | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  ( 𝑦  ∈  ∪  𝑢  →  𝑦  ∈  ∪  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 } ) ) | 
						
							| 36 | 35 | ssrdv | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  ∪  𝑢  ⊆  ∪  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 } ) | 
						
							| 37 | 20 36 | eqsstrd | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  𝑋  ⊆  ∪  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 } ) | 
						
							| 38 |  | ssrab2 | ⊢ { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ⊆  𝐵 | 
						
							| 39 | 38 | unissi | ⊢ ∪  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ⊆  ∪  𝐵 | 
						
							| 40 |  | simplr | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  𝑋  =  ∪  𝐵 ) | 
						
							| 41 | 39 40 | sseqtrrid | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  ∪  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ⊆  𝑋 ) | 
						
							| 42 | 37 41 | eqssd | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  𝑋  =  ∪  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 } ) | 
						
							| 43 |  | elpw2g | ⊢ ( 𝐵  ∈  TopBases  →  ( { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∈  𝒫  𝐵  ↔  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ⊆  𝐵 ) ) | 
						
							| 44 | 43 | ad2antrr | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  ( { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∈  𝒫  𝐵  ↔  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ⊆  𝐵 ) ) | 
						
							| 45 | 38 44 | mpbiri | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∈  𝒫  𝐵 ) | 
						
							| 46 |  | unieq | ⊢ ( 𝑦  =  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  →  ∪  𝑦  =  ∪  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 } ) | 
						
							| 47 | 46 | eqeq2d | ⊢ ( 𝑦  =  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  →  ( 𝑋  =  ∪  𝑦  ↔  𝑋  =  ∪  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 } ) ) | 
						
							| 48 |  | pweq | ⊢ ( 𝑦  =  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  →  𝒫  𝑦  =  𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 } ) | 
						
							| 49 | 48 | ineq1d | ⊢ ( 𝑦  =  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  →  ( 𝒫  𝑦  ∩  Fin )  =  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin ) ) | 
						
							| 50 | 49 | rexeqdv | ⊢ ( 𝑦  =  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  →  ( ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧  ↔  ∃ 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) | 
						
							| 51 | 47 50 | imbi12d | ⊢ ( 𝑦  =  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  →  ( ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 )  ↔  ( 𝑋  =  ∪  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  →  ∃ 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) | 
						
							| 52 | 51 | rspcv | ⊢ ( { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∈  𝒫  𝐵  →  ( ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 )  →  ( 𝑋  =  ∪  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  →  ∃ 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) | 
						
							| 53 | 45 52 | syl | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  ( ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 )  →  ( 𝑋  =  ∪  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  →  ∃ 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) | 
						
							| 54 | 42 53 | mpid | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  ( ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 )  →  ∃ 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) | 
						
							| 55 |  | elfpw | ⊢ ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ↔  ( 𝑧  ⊆  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∧  𝑧  ∈  Fin ) ) | 
						
							| 56 | 55 | simprbi | ⊢ ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  →  𝑧  ∈  Fin ) | 
						
							| 57 | 56 | ad2antrl | ⊢ ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  →  𝑧  ∈  Fin ) | 
						
							| 58 | 55 | simplbi | ⊢ ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  →  𝑧  ⊆  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 } ) | 
						
							| 59 | 58 | ad2antrl | ⊢ ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  →  𝑧  ⊆  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 } ) | 
						
							| 60 |  | ssrab | ⊢ ( 𝑧  ⊆  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ↔  ( 𝑧  ⊆  𝐵  ∧  ∀ 𝑤  ∈  𝑧 ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 ) ) | 
						
							| 61 | 60 | simprbi | ⊢ ( 𝑧  ⊆  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  →  ∀ 𝑤  ∈  𝑧 ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 ) | 
						
							| 62 | 59 61 | syl | ⊢ ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  →  ∀ 𝑤  ∈  𝑧 ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 ) | 
						
							| 63 |  | sseq2 | ⊢ ( 𝑡  =  ( 𝑓 ‘ 𝑤 )  →  ( 𝑤  ⊆  𝑡  ↔  𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) ) | 
						
							| 64 | 63 | ac6sfi | ⊢ ( ( 𝑧  ∈  Fin  ∧  ∀ 𝑤  ∈  𝑧 ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 )  →  ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) ) | 
						
							| 65 | 57 62 64 | syl2anc | ⊢ ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  →  ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) ) | 
						
							| 66 |  | frn | ⊢ ( 𝑓 : 𝑧 ⟶ 𝑢  →  ran  𝑓  ⊆  𝑢 ) | 
						
							| 67 | 66 | ad2antrl | ⊢ ( ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  ∧  ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ran  𝑓  ⊆  𝑢 ) | 
						
							| 68 |  | ffn | ⊢ ( 𝑓 : 𝑧 ⟶ 𝑢  →  𝑓  Fn  𝑧 ) | 
						
							| 69 |  | dffn4 | ⊢ ( 𝑓  Fn  𝑧  ↔  𝑓 : 𝑧 –onto→ ran  𝑓 ) | 
						
							| 70 | 68 69 | sylib | ⊢ ( 𝑓 : 𝑧 ⟶ 𝑢  →  𝑓 : 𝑧 –onto→ ran  𝑓 ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) )  →  𝑓 : 𝑧 –onto→ ran  𝑓 ) | 
						
							| 72 |  | fofi | ⊢ ( ( 𝑧  ∈  Fin  ∧  𝑓 : 𝑧 –onto→ ran  𝑓 )  →  ran  𝑓  ∈  Fin ) | 
						
							| 73 | 57 71 72 | syl2an | ⊢ ( ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  ∧  ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ran  𝑓  ∈  Fin ) | 
						
							| 74 |  | elfpw | ⊢ ( ran  𝑓  ∈  ( 𝒫  𝑢  ∩  Fin )  ↔  ( ran  𝑓  ⊆  𝑢  ∧  ran  𝑓  ∈  Fin ) ) | 
						
							| 75 | 67 73 74 | sylanbrc | ⊢ ( ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  ∧  ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ran  𝑓  ∈  ( 𝒫  𝑢  ∩  Fin ) ) | 
						
							| 76 |  | simplrr | ⊢ ( ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  ∧  ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  𝑋  =  ∪  𝑧 ) | 
						
							| 77 |  | uniiun | ⊢ ∪  𝑧  =  ∪  𝑤  ∈  𝑧 𝑤 | 
						
							| 78 |  | ss2iun | ⊢ ( ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 )  →  ∪  𝑤  ∈  𝑧 𝑤  ⊆  ∪  𝑤  ∈  𝑧 ( 𝑓 ‘ 𝑤 ) ) | 
						
							| 79 | 77 78 | eqsstrid | ⊢ ( ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 )  →  ∪  𝑧  ⊆  ∪  𝑤  ∈  𝑧 ( 𝑓 ‘ 𝑤 ) ) | 
						
							| 80 | 79 | ad2antll | ⊢ ( ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  ∧  ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ∪  𝑧  ⊆  ∪  𝑤  ∈  𝑧 ( 𝑓 ‘ 𝑤 ) ) | 
						
							| 81 |  | fniunfv | ⊢ ( 𝑓  Fn  𝑧  →  ∪  𝑤  ∈  𝑧 ( 𝑓 ‘ 𝑤 )  =  ∪  ran  𝑓 ) | 
						
							| 82 | 68 81 | syl | ⊢ ( 𝑓 : 𝑧 ⟶ 𝑢  →  ∪  𝑤  ∈  𝑧 ( 𝑓 ‘ 𝑤 )  =  ∪  ran  𝑓 ) | 
						
							| 83 | 82 | ad2antrl | ⊢ ( ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  ∧  ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ∪  𝑤  ∈  𝑧 ( 𝑓 ‘ 𝑤 )  =  ∪  ran  𝑓 ) | 
						
							| 84 | 80 83 | sseqtrd | ⊢ ( ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  ∧  ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ∪  𝑧  ⊆  ∪  ran  𝑓 ) | 
						
							| 85 | 76 84 | eqsstrd | ⊢ ( ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  ∧  ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  𝑋  ⊆  ∪  ran  𝑓 ) | 
						
							| 86 | 67 | unissd | ⊢ ( ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  ∧  ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ∪  ran  𝑓  ⊆  ∪  𝑢 ) | 
						
							| 87 | 20 | ad2antrr | ⊢ ( ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  ∧  ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  𝑋  =  ∪  𝑢 ) | 
						
							| 88 | 86 87 | sseqtrrd | ⊢ ( ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  ∧  ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ∪  ran  𝑓  ⊆  𝑋 ) | 
						
							| 89 | 85 88 | eqssd | ⊢ ( ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  ∧  ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  𝑋  =  ∪  ran  𝑓 ) | 
						
							| 90 |  | unieq | ⊢ ( 𝑣  =  ran  𝑓  →  ∪  𝑣  =  ∪  ran  𝑓 ) | 
						
							| 91 | 90 | rspceeqv | ⊢ ( ( ran  𝑓  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  𝑋  =  ∪  ran  𝑓 )  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑣 ) | 
						
							| 92 | 75 89 91 | syl2anc | ⊢ ( ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  ∧  ( 𝑓 : 𝑧 ⟶ 𝑢  ∧  ∀ 𝑤  ∈  𝑧 𝑤  ⊆  ( 𝑓 ‘ 𝑤 ) ) )  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑣 ) | 
						
							| 93 | 65 92 | exlimddv | ⊢ ( ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  ∧  ( 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin )  ∧  𝑋  =  ∪  𝑧 ) )  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑣 ) | 
						
							| 94 | 93 | rexlimdvaa | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  ( ∃ 𝑧  ∈  ( 𝒫  { 𝑤  ∈  𝐵  ∣  ∃ 𝑡  ∈  𝑢 𝑤  ⊆  𝑡 }  ∩  Fin ) 𝑋  =  ∪  𝑧  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑣 ) ) | 
						
							| 95 | 54 94 | syld | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  ( 𝑢  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑋  =  ∪  𝑢 ) )  →  ( ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 )  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑣 ) ) | 
						
							| 96 | 95 | expr | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  𝑢  ⊆  ( topGen ‘ 𝐵 ) )  →  ( 𝑋  =  ∪  𝑢  →  ( ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 )  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑣 ) ) ) | 
						
							| 97 | 96 | com23 | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  𝑢  ⊆  ( topGen ‘ 𝐵 ) )  →  ( ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 )  →  ( 𝑋  =  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑣 ) ) ) | 
						
							| 98 | 19 97 | sylan2 | ⊢ ( ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  ∧  𝑢  ∈  𝒫  ( topGen ‘ 𝐵 ) )  →  ( ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 )  →  ( 𝑋  =  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑣 ) ) ) | 
						
							| 99 | 98 | ralrimdva | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 )  →  ∀ 𝑢  ∈  𝒫  ( topGen ‘ 𝐵 ) ( 𝑋  =  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑣 ) ) ) | 
						
							| 100 |  | tgcl | ⊢ ( 𝐵  ∈  TopBases  →  ( topGen ‘ 𝐵 )  ∈  Top ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( topGen ‘ 𝐵 )  ∈  Top ) | 
						
							| 102 | 1 | iscmp | ⊢ ( ( topGen ‘ 𝐵 )  ∈  Comp  ↔  ( ( topGen ‘ 𝐵 )  ∈  Top  ∧  ∀ 𝑢  ∈  𝒫  ( topGen ‘ 𝐵 ) ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑣 ) ) ) | 
						
							| 103 | 102 | baib | ⊢ ( ( topGen ‘ 𝐵 )  ∈  Top  →  ( ( topGen ‘ 𝐵 )  ∈  Comp  ↔  ∀ 𝑢  ∈  𝒫  ( topGen ‘ 𝐵 ) ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑣 ) ) ) | 
						
							| 104 | 101 103 | syl | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ( topGen ‘ 𝐵 )  ∈  Comp  ↔  ∀ 𝑢  ∈  𝒫  ( topGen ‘ 𝐵 ) ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑣 ) ) ) | 
						
							| 105 | 6 | eqeq1d | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑢  ↔  𝑋  =  ∪  𝑢 ) ) | 
						
							| 106 | 6 | eqeq1d | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑣  ↔  𝑋  =  ∪  𝑣 ) ) | 
						
							| 107 | 106 | rexbidv | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑣  ↔  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑣 ) ) | 
						
							| 108 | 105 107 | imbi12d | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑣 )  ↔  ( 𝑋  =  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑣 ) ) ) | 
						
							| 109 | 108 | ralbidv | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ∀ 𝑢  ∈  𝒫  ( topGen ‘ 𝐵 ) ( ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ∪  ( topGen ‘ 𝐵 )  =  ∪  𝑣 )  ↔  ∀ 𝑢  ∈  𝒫  ( topGen ‘ 𝐵 ) ( 𝑋  =  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑣 ) ) ) | 
						
							| 110 | 104 109 | bitrd | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ( topGen ‘ 𝐵 )  ∈  Comp  ↔  ∀ 𝑢  ∈  𝒫  ( topGen ‘ 𝐵 ) ( 𝑋  =  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) 𝑋  =  ∪  𝑣 ) ) ) | 
						
							| 111 | 99 110 | sylibrd | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 )  →  ( topGen ‘ 𝐵 )  ∈  Comp ) ) | 
						
							| 112 | 18 111 | impbid | ⊢ ( ( 𝐵  ∈  TopBases  ∧  𝑋  =  ∪  𝐵 )  →  ( ( topGen ‘ 𝐵 )  ∈  Comp  ↔  ∀ 𝑦  ∈  𝒫  𝐵 ( 𝑋  =  ∪  𝑦  →  ∃ 𝑧  ∈  ( 𝒫  𝑦  ∩  Fin ) 𝑋  =  ∪  𝑧 ) ) ) |