| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgcn.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
tgcn.3 |
⊢ ( 𝜑 → 𝐾 = ( topGen ‘ 𝐵 ) ) |
| 3 |
|
tgcn.4 |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 4 |
|
iscn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 5 |
1 3 4
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 6 |
|
topontop |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) |
| 7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 8 |
2 7
|
eqeltrrd |
⊢ ( 𝜑 → ( topGen ‘ 𝐵 ) ∈ Top ) |
| 9 |
|
tgclb |
⊢ ( 𝐵 ∈ TopBases ↔ ( topGen ‘ 𝐵 ) ∈ Top ) |
| 10 |
8 9
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ TopBases ) |
| 11 |
|
bastg |
⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 13 |
12 2
|
sseqtrrd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐾 ) |
| 14 |
|
ssralv |
⊢ ( 𝐵 ⊆ 𝐾 → ( ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 16 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 ↔ 𝑥 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 17 |
|
eltg3 |
⊢ ( 𝐵 ∈ TopBases → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧 ) ) ) |
| 18 |
10 17
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧 ) ) ) |
| 19 |
16 18
|
bitrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 ↔ ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧 ) ) ) |
| 20 |
|
ssralv |
⊢ ( 𝑧 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 21 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 22 |
1 21
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 23 |
|
iunopn |
⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) → ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
| 24 |
23
|
ex |
⊢ ( 𝐽 ∈ Top → ( ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 25 |
22 24
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 26 |
20 25
|
sylan9r |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 27 |
|
imaeq2 |
⊢ ( 𝑥 = ∪ 𝑧 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ ∪ 𝑧 ) ) |
| 28 |
|
imauni |
⊢ ( ◡ 𝐹 “ ∪ 𝑧 ) = ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) |
| 29 |
27 28
|
eqtrdi |
⊢ ( 𝑥 = ∪ 𝑧 → ( ◡ 𝐹 “ 𝑥 ) = ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ) |
| 30 |
29
|
eleq1d |
⊢ ( 𝑥 = ∪ 𝑧 → ( ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ↔ ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 31 |
30
|
imbi2d |
⊢ ( 𝑥 = ∪ 𝑧 → ( ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ↔ ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 32 |
26 31
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑥 = ∪ 𝑧 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 33 |
32
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 34 |
33
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 35 |
19 34
|
sylbid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 36 |
35
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
| 37 |
36
|
ralrimdva |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
| 38 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑦 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑦 ) ) |
| 39 |
38
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 40 |
39
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ↔ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
| 41 |
37 40
|
imbitrdi |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 42 |
15 41
|
impbid |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 43 |
42
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 44 |
5 43
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |