Step |
Hyp |
Ref |
Expression |
1 |
|
tgcn.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
tgcn.3 |
⊢ ( 𝜑 → 𝐾 = ( topGen ‘ 𝐵 ) ) |
3 |
|
tgcn.4 |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
4 |
|
tgcnp.5 |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
5 |
|
iscnp |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
6 |
1 3 4 5
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
7 |
|
topontop |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
9 |
2 8
|
eqeltrrd |
⊢ ( 𝜑 → ( topGen ‘ 𝐵 ) ∈ Top ) |
10 |
|
tgclb |
⊢ ( 𝐵 ∈ TopBases ↔ ( topGen ‘ 𝐵 ) ∈ Top ) |
11 |
9 10
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ TopBases ) |
12 |
|
bastg |
⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
14 |
13 2
|
sseqtrrd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐾 ) |
15 |
|
ssralv |
⊢ ( 𝐵 ⊆ 𝐾 → ( ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
17 |
16
|
anim2d |
⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
18 |
6 17
|
sylbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
19 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐾 ↔ 𝑧 ∈ ( topGen ‘ 𝐵 ) ) ) |
20 |
19
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐾 ) → 𝑧 ∈ ( topGen ‘ 𝐵 ) ) |
21 |
|
tg2 |
⊢ ( ( 𝑧 ∈ ( topGen ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) |
22 |
|
r19.29 |
⊢ ( ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) → ∃ 𝑦 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) ) |
23 |
|
sstr |
⊢ ( ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) → ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) |
24 |
23
|
expcom |
⊢ ( 𝑦 ⊆ 𝑧 → ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) |
25 |
24
|
anim2d |
⊢ ( 𝑦 ⊆ 𝑧 → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
26 |
25
|
reximdv |
⊢ ( 𝑦 ⊆ 𝑧 → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
27 |
26
|
com12 |
⊢ ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ( 𝑦 ⊆ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
28 |
27
|
imim2i |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ( 𝑦 ⊆ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
29 |
28
|
imp32 |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) |
30 |
29
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) |
31 |
22 30
|
syl |
⊢ ( ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) |
32 |
31
|
expcom |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
33 |
21 32
|
syl |
⊢ ( ( 𝑧 ∈ ( topGen ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
34 |
33
|
ex |
⊢ ( 𝑧 ∈ ( topGen ‘ 𝐵 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
35 |
34
|
com23 |
⊢ ( 𝑧 ∈ ( topGen ‘ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
36 |
20 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐾 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
37 |
36
|
ralrimdva |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∀ 𝑧 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
38 |
37
|
anim2d |
⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) ) |
39 |
|
iscnp |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) ) |
40 |
1 3 4 39
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) ) |
41 |
38 40
|
sylibrd |
⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ) |
42 |
18 41
|
impbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |