| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgcn.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
tgcn.3 |
⊢ ( 𝜑 → 𝐾 = ( topGen ‘ 𝐵 ) ) |
| 3 |
|
tgcn.4 |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 4 |
|
tgcnp.5 |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
| 5 |
|
iscnp |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 6 |
1 3 4 5
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 7 |
|
topontop |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) |
| 8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 9 |
2 8
|
eqeltrrd |
⊢ ( 𝜑 → ( topGen ‘ 𝐵 ) ∈ Top ) |
| 10 |
|
tgclb |
⊢ ( 𝐵 ∈ TopBases ↔ ( topGen ‘ 𝐵 ) ∈ Top ) |
| 11 |
9 10
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ TopBases ) |
| 12 |
|
bastg |
⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 14 |
13 2
|
sseqtrrd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐾 ) |
| 15 |
|
ssralv |
⊢ ( 𝐵 ⊆ 𝐾 → ( ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
| 17 |
16
|
anim2d |
⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 18 |
6 17
|
sylbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 19 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐾 ↔ 𝑧 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 20 |
19
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐾 ) → 𝑧 ∈ ( topGen ‘ 𝐵 ) ) |
| 21 |
|
tg2 |
⊢ ( ( 𝑧 ∈ ( topGen ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) |
| 22 |
|
r19.29 |
⊢ ( ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) → ∃ 𝑦 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) ) |
| 23 |
|
sstr |
⊢ ( ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) → ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) |
| 24 |
23
|
expcom |
⊢ ( 𝑦 ⊆ 𝑧 → ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) |
| 25 |
24
|
anim2d |
⊢ ( 𝑦 ⊆ 𝑧 → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 26 |
25
|
reximdv |
⊢ ( 𝑦 ⊆ 𝑧 → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 27 |
26
|
com12 |
⊢ ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ( 𝑦 ⊆ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 28 |
27
|
imim2i |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ( 𝑦 ⊆ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
| 29 |
28
|
imp32 |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) |
| 30 |
29
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) |
| 31 |
22 30
|
syl |
⊢ ( ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) |
| 32 |
31
|
expcom |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 33 |
21 32
|
syl |
⊢ ( ( 𝑧 ∈ ( topGen ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 34 |
33
|
ex |
⊢ ( 𝑧 ∈ ( topGen ‘ 𝐵 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
| 35 |
34
|
com23 |
⊢ ( 𝑧 ∈ ( topGen ‘ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
| 36 |
20 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐾 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
| 37 |
36
|
ralrimdva |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) → ∀ 𝑧 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
| 38 |
37
|
anim2d |
⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) ) |
| 39 |
|
iscnp |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) ) |
| 40 |
1 3 4 39
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑧 ) ) ) ) ) |
| 41 |
38 40
|
sylibrd |
⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ) |
| 42 |
18 41
|
impbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |