Step |
Hyp |
Ref |
Expression |
1 |
|
tglngval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tglngval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
3 |
|
tglngval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
tglngval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tglngval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
6 |
|
tglngval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
7 |
|
tgcolg.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
8 |
|
animorr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) ) |
9 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝐺 ∈ TarskiG ) |
11 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑍 ∈ 𝑃 ) |
12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ 𝑃 ) |
13 |
1 9 3 10 11 12
|
tgbtwntriv2 |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ ( 𝑍 𝐼 𝑋 ) ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) |
15 |
14
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝑍 𝐼 𝑋 ) = ( 𝑍 𝐼 𝑌 ) ) |
16 |
13 15
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) |
17 |
16
|
3mix2d |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) |
18 |
8 17
|
2thd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ≠ 𝑌 ) |
20 |
19
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ¬ 𝑋 = 𝑌 ) |
21 |
|
biorf |
⊢ ( ¬ 𝑋 = 𝑌 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝑋 = 𝑌 ∨ 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ) ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝑋 = 𝑌 ∨ 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ) ) ) |
23 |
|
orcom |
⊢ ( ( 𝑋 = 𝑌 ∨ 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ) ↔ ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) ) |
24 |
22 23
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) ) ) |
25 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝐺 ∈ TarskiG ) |
26 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ∈ 𝑃 ) |
27 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝑌 ∈ 𝑃 ) |
28 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝑍 ∈ 𝑃 ) |
29 |
1 2 3 25 26 27 19 28
|
tgellng |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) |
30 |
24 29
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) |
31 |
18 30
|
pm2.61dane |
⊢ ( 𝜑 → ( ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) |