| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indif1 | ⊢ ( ( 𝐵  ∖  { ∅ } )  ∩  𝒫  𝑥 )  =  ( ( 𝐵  ∩  𝒫  𝑥 )  ∖  { ∅ } ) | 
						
							| 2 | 1 | unieqi | ⊢ ∪  ( ( 𝐵  ∖  { ∅ } )  ∩  𝒫  𝑥 )  =  ∪  ( ( 𝐵  ∩  𝒫  𝑥 )  ∖  { ∅ } ) | 
						
							| 3 |  | unidif0 | ⊢ ∪  ( ( 𝐵  ∩  𝒫  𝑥 )  ∖  { ∅ } )  =  ∪  ( 𝐵  ∩  𝒫  𝑥 ) | 
						
							| 4 | 2 3 | eqtri | ⊢ ∪  ( ( 𝐵  ∖  { ∅ } )  ∩  𝒫  𝑥 )  =  ∪  ( 𝐵  ∩  𝒫  𝑥 ) | 
						
							| 5 | 4 | sseq2i | ⊢ ( 𝑥  ⊆  ∪  ( ( 𝐵  ∖  { ∅ } )  ∩  𝒫  𝑥 )  ↔  𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 ) ) | 
						
							| 6 | 5 | abbii | ⊢ { 𝑥  ∣  𝑥  ⊆  ∪  ( ( 𝐵  ∖  { ∅ } )  ∩  𝒫  𝑥 ) }  =  { 𝑥  ∣  𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 ) } | 
						
							| 7 |  | difexg | ⊢ ( 𝐵  ∈  V  →  ( 𝐵  ∖  { ∅ } )  ∈  V ) | 
						
							| 8 |  | tgval | ⊢ ( ( 𝐵  ∖  { ∅ } )  ∈  V  →  ( topGen ‘ ( 𝐵  ∖  { ∅ } ) )  =  { 𝑥  ∣  𝑥  ⊆  ∪  ( ( 𝐵  ∖  { ∅ } )  ∩  𝒫  𝑥 ) } ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐵  ∈  V  →  ( topGen ‘ ( 𝐵  ∖  { ∅ } ) )  =  { 𝑥  ∣  𝑥  ⊆  ∪  ( ( 𝐵  ∖  { ∅ } )  ∩  𝒫  𝑥 ) } ) | 
						
							| 10 |  | tgval | ⊢ ( 𝐵  ∈  V  →  ( topGen ‘ 𝐵 )  =  { 𝑥  ∣  𝑥  ⊆  ∪  ( 𝐵  ∩  𝒫  𝑥 ) } ) | 
						
							| 11 | 6 9 10 | 3eqtr4a | ⊢ ( 𝐵  ∈  V  →  ( topGen ‘ ( 𝐵  ∖  { ∅ } ) )  =  ( topGen ‘ 𝐵 ) ) | 
						
							| 12 |  | difsnexi | ⊢ ( ( 𝐵  ∖  { ∅ } )  ∈  V  →  𝐵  ∈  V ) | 
						
							| 13 |  | fvprc | ⊢ ( ¬  ( 𝐵  ∖  { ∅ } )  ∈  V  →  ( topGen ‘ ( 𝐵  ∖  { ∅ } ) )  =  ∅ ) | 
						
							| 14 | 12 13 | nsyl5 | ⊢ ( ¬  𝐵  ∈  V  →  ( topGen ‘ ( 𝐵  ∖  { ∅ } ) )  =  ∅ ) | 
						
							| 15 |  | fvprc | ⊢ ( ¬  𝐵  ∈  V  →  ( topGen ‘ 𝐵 )  =  ∅ ) | 
						
							| 16 | 14 15 | eqtr4d | ⊢ ( ¬  𝐵  ∈  V  →  ( topGen ‘ ( 𝐵  ∖  { ∅ } ) )  =  ( topGen ‘ 𝐵 ) ) | 
						
							| 17 | 11 16 | pm2.61i | ⊢ ( topGen ‘ ( 𝐵  ∖  { ∅ } ) )  =  ( topGen ‘ 𝐵 ) |