Step |
Hyp |
Ref |
Expression |
1 |
|
tgdim01.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tgdim01.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
tgdim01.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
4 |
|
tgdim01.1 |
⊢ ( 𝜑 → ¬ 𝐺 DimTarskiG≥ 2 ) |
5 |
|
tgdim01.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
6 |
|
tgdim01.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
7 |
|
tgdim01.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
8 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
9 |
1 8 2
|
istrkg2ld |
⊢ ( 𝐺 ∈ 𝑉 → ( 𝐺 DimTarskiG≥ 2 ↔ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → ( 𝐺 DimTarskiG≥ 2 ↔ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) |
11 |
4 10
|
mtbid |
⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) |
12 |
|
rexnal3 |
⊢ ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ¬ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) |
13 |
12
|
con2bii |
⊢ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ¬ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) |
14 |
11 13
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) |
15 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐼 𝑦 ) = ( 𝑋 𝐼 𝑦 ) ) |
16 |
15
|
eleq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ↔ 𝑧 ∈ ( 𝑋 𝐼 𝑦 ) ) ) |
17 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ↔ 𝑋 ∈ ( 𝑧 𝐼 𝑦 ) ) ) |
18 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐼 𝑧 ) = ( 𝑋 𝐼 𝑧 ) ) |
19 |
18
|
eleq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ↔ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) ) |
20 |
16 17 19
|
3orbi123d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝑋 𝐼 𝑦 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐼 𝑦 ) = ( 𝑋 𝐼 𝑌 ) ) |
22 |
21
|
eleq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑧 ∈ ( 𝑋 𝐼 𝑦 ) ↔ 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑧 𝐼 𝑦 ) = ( 𝑧 𝐼 𝑌 ) ) |
24 |
23
|
eleq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ∈ ( 𝑧 𝐼 𝑦 ) ↔ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ) ) |
25 |
|
eleq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ) |
26 |
22 24 25
|
3orbi123d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑧 ∈ ( 𝑋 𝐼 𝑦 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ) ) |
27 |
|
eleq1 |
⊢ ( 𝑧 = 𝑍 → ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) ) |
28 |
|
oveq1 |
⊢ ( 𝑧 = 𝑍 → ( 𝑧 𝐼 𝑌 ) = ( 𝑍 𝐼 𝑌 ) ) |
29 |
28
|
eleq2d |
⊢ ( 𝑧 = 𝑍 → ( 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ↔ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) ) |
30 |
|
oveq2 |
⊢ ( 𝑧 = 𝑍 → ( 𝑋 𝐼 𝑧 ) = ( 𝑋 𝐼 𝑍 ) ) |
31 |
30
|
eleq2d |
⊢ ( 𝑧 = 𝑍 → ( 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) |
32 |
27 29 31
|
3orbi123d |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) |
33 |
20 26 32
|
rspc3v |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) |
34 |
33
|
imp |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑍 ∈ 𝑃 ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) |
35 |
5 6 7 14 34
|
syl31anc |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) |