Step |
Hyp |
Ref |
Expression |
1 |
|
pwexg |
⊢ ( 𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V ) |
2 |
|
inss1 |
⊢ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ 𝐵 |
3 |
|
vpwex |
⊢ 𝒫 𝑥 ∈ V |
4 |
3
|
inex2 |
⊢ ( 𝐵 ∩ 𝒫 𝑥 ) ∈ V |
5 |
4
|
elpw |
⊢ ( ( 𝐵 ∩ 𝒫 𝑥 ) ∈ 𝒫 𝐵 ↔ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ 𝐵 ) |
6 |
2 5
|
mpbir |
⊢ ( 𝐵 ∩ 𝒫 𝑥 ) ∈ 𝒫 𝐵 |
7 |
6
|
a1i |
⊢ ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → ( 𝐵 ∩ 𝒫 𝑥 ) ∈ 𝒫 𝐵 ) |
8 |
|
unieq |
⊢ ( ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) → ∪ ( 𝐵 ∩ 𝒫 𝑥 ) = ∪ ( 𝐵 ∩ 𝒫 𝑦 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ∧ ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) → ∪ ( 𝐵 ∩ 𝒫 𝑥 ) = ∪ ( 𝐵 ∩ 𝒫 𝑦 ) ) |
10 |
|
eltg4i |
⊢ ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → 𝑥 = ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ∧ ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) → 𝑥 = ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
12 |
|
eltg4i |
⊢ ( 𝑦 ∈ ( topGen ‘ 𝐵 ) → 𝑦 = ∪ ( 𝐵 ∩ 𝒫 𝑦 ) ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ∧ ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) → 𝑦 = ∪ ( 𝐵 ∩ 𝒫 𝑦 ) ) |
14 |
9 11 13
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ∧ ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) → 𝑥 = 𝑦 ) |
15 |
14
|
ex |
⊢ ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) → ( ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) → 𝑥 = 𝑦 ) ) |
16 |
|
pweq |
⊢ ( 𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦 ) |
17 |
16
|
ineq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ) |
18 |
15 17
|
impbid1 |
⊢ ( ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) → ( ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
19 |
7 18
|
dom2 |
⊢ ( 𝒫 𝐵 ∈ V → ( topGen ‘ 𝐵 ) ≼ 𝒫 𝐵 ) |
20 |
1 19
|
syl |
⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ 𝐵 ) ≼ 𝒫 𝐵 ) |