Metamath Proof Explorer


Theorem tgellng

Description: Property of lying on the line going through points X and Y . Definition 4.10 of Schwabhauser p. 36. We choose the notation Z e. ( X ( LineGG ) Y ) instead of "colinear" because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 28-Mar-2019)

Ref Expression
Hypotheses tglngval.p 𝑃 = ( Base ‘ 𝐺 )
tglngval.l 𝐿 = ( LineG ‘ 𝐺 )
tglngval.i 𝐼 = ( Itv ‘ 𝐺 )
tglngval.g ( 𝜑𝐺 ∈ TarskiG )
tglngval.x ( 𝜑𝑋𝑃 )
tglngval.y ( 𝜑𝑌𝑃 )
tglngval.z ( 𝜑𝑋𝑌 )
tgellng.z ( 𝜑𝑍𝑃 )
Assertion tgellng ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) )

Proof

Step Hyp Ref Expression
1 tglngval.p 𝑃 = ( Base ‘ 𝐺 )
2 tglngval.l 𝐿 = ( LineG ‘ 𝐺 )
3 tglngval.i 𝐼 = ( Itv ‘ 𝐺 )
4 tglngval.g ( 𝜑𝐺 ∈ TarskiG )
5 tglngval.x ( 𝜑𝑋𝑃 )
6 tglngval.y ( 𝜑𝑌𝑃 )
7 tglngval.z ( 𝜑𝑋𝑌 )
8 tgellng.z ( 𝜑𝑍𝑃 )
9 1 2 3 4 5 6 7 tglngval ( 𝜑 → ( 𝑋 𝐿 𝑌 ) = { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } )
10 9 eleq2d ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ 𝑍 ∈ { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } ) )
11 eleq1 ( 𝑧 = 𝑍 → ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) )
12 oveq1 ( 𝑧 = 𝑍 → ( 𝑧 𝐼 𝑌 ) = ( 𝑍 𝐼 𝑌 ) )
13 12 eleq2d ( 𝑧 = 𝑍 → ( 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ↔ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) )
14 oveq2 ( 𝑧 = 𝑍 → ( 𝑋 𝐼 𝑧 ) = ( 𝑋 𝐼 𝑍 ) )
15 14 eleq2d ( 𝑧 = 𝑍 → ( 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) )
16 11 13 15 3orbi123d ( 𝑧 = 𝑍 → ( ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) )
17 16 elrab ( 𝑍 ∈ { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } ↔ ( 𝑍𝑃 ∧ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) )
18 10 17 bitrdi ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝑍𝑃 ∧ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) )
19 8 18 mpbirand ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) )