Step |
Hyp |
Ref |
Expression |
1 |
|
tglineelsb2.p |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tglineelsb2.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
tglineelsb2.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
tglineelsb2.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tglineelsb2.1 |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
6 |
|
tglineelsb2.2 |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
7 |
|
tglineelsb2.4 |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
8 |
1 2 3 4 5 6 7
|
tgelrnln |
⊢ ( 𝜑 → ( 𝑃 𝐿 𝑄 ) ∈ ran 𝐿 ) |
9 |
1 2 3 4 5 6 7
|
tglinerflx1 |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝑃 𝐿 𝑄 ) ) |
10 |
1 2 3 4 5 6 7
|
tglinerflx2 |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 𝐿 𝑄 ) ) |
11 |
|
eleq2 |
⊢ ( 𝑥 = ( 𝑃 𝐿 𝑄 ) → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ( 𝑃 𝐿 𝑄 ) ) ) |
12 |
|
eleq2 |
⊢ ( 𝑥 = ( 𝑃 𝐿 𝑄 ) → ( 𝑄 ∈ 𝑥 ↔ 𝑄 ∈ ( 𝑃 𝐿 𝑄 ) ) ) |
13 |
11 12
|
anbi12d |
⊢ ( 𝑥 = ( 𝑃 𝐿 𝑄 ) → ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ↔ ( 𝑃 ∈ ( 𝑃 𝐿 𝑄 ) ∧ 𝑄 ∈ ( 𝑃 𝐿 𝑄 ) ) ) ) |
14 |
13
|
rspcev |
⊢ ( ( ( 𝑃 𝐿 𝑄 ) ∈ ran 𝐿 ∧ ( 𝑃 ∈ ( 𝑃 𝐿 𝑄 ) ∧ 𝑄 ∈ ( 𝑃 𝐿 𝑄 ) ) ) → ∃ 𝑥 ∈ ran 𝐿 ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ) |
15 |
8 9 10 14
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ran 𝐿 ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ) |