Metamath Proof Explorer


Theorem tghilberti1

Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglineelsb2.p 𝐵 = ( Base ‘ 𝐺 )
tglineelsb2.i 𝐼 = ( Itv ‘ 𝐺 )
tglineelsb2.l 𝐿 = ( LineG ‘ 𝐺 )
tglineelsb2.g ( 𝜑𝐺 ∈ TarskiG )
tglineelsb2.1 ( 𝜑𝑃𝐵 )
tglineelsb2.2 ( 𝜑𝑄𝐵 )
tglineelsb2.4 ( 𝜑𝑃𝑄 )
Assertion tghilberti1 ( 𝜑 → ∃ 𝑥 ∈ ran 𝐿 ( 𝑃𝑥𝑄𝑥 ) )

Proof

Step Hyp Ref Expression
1 tglineelsb2.p 𝐵 = ( Base ‘ 𝐺 )
2 tglineelsb2.i 𝐼 = ( Itv ‘ 𝐺 )
3 tglineelsb2.l 𝐿 = ( LineG ‘ 𝐺 )
4 tglineelsb2.g ( 𝜑𝐺 ∈ TarskiG )
5 tglineelsb2.1 ( 𝜑𝑃𝐵 )
6 tglineelsb2.2 ( 𝜑𝑄𝐵 )
7 tglineelsb2.4 ( 𝜑𝑃𝑄 )
8 1 2 3 4 5 6 7 tgelrnln ( 𝜑 → ( 𝑃 𝐿 𝑄 ) ∈ ran 𝐿 )
9 1 2 3 4 5 6 7 tglinerflx1 ( 𝜑𝑃 ∈ ( 𝑃 𝐿 𝑄 ) )
10 1 2 3 4 5 6 7 tglinerflx2 ( 𝜑𝑄 ∈ ( 𝑃 𝐿 𝑄 ) )
11 eleq2 ( 𝑥 = ( 𝑃 𝐿 𝑄 ) → ( 𝑃𝑥𝑃 ∈ ( 𝑃 𝐿 𝑄 ) ) )
12 eleq2 ( 𝑥 = ( 𝑃 𝐿 𝑄 ) → ( 𝑄𝑥𝑄 ∈ ( 𝑃 𝐿 𝑄 ) ) )
13 11 12 anbi12d ( 𝑥 = ( 𝑃 𝐿 𝑄 ) → ( ( 𝑃𝑥𝑄𝑥 ) ↔ ( 𝑃 ∈ ( 𝑃 𝐿 𝑄 ) ∧ 𝑄 ∈ ( 𝑃 𝐿 𝑄 ) ) ) )
14 13 rspcev ( ( ( 𝑃 𝐿 𝑄 ) ∈ ran 𝐿 ∧ ( 𝑃 ∈ ( 𝑃 𝐿 𝑄 ) ∧ 𝑄 ∈ ( 𝑃 𝐿 𝑄 ) ) ) → ∃ 𝑥 ∈ ran 𝐿 ( 𝑃𝑥𝑄𝑥 ) )
15 8 9 10 14 syl12anc ( 𝜑 → ∃ 𝑥 ∈ ran 𝐿 ( 𝑃𝑥𝑄𝑥 ) )