| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvex | ⊢ ( topGen ‘ 𝐵 )  ∈  V | 
						
							| 2 |  | eltg3 | ⊢ ( ( topGen ‘ 𝐵 )  ∈  V  →  ( 𝑥  ∈  ( topGen ‘ ( topGen ‘ 𝐵 ) )  ↔  ∃ 𝑦 ( 𝑦  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑥  =  ∪  𝑦 ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 𝑥  ∈  ( topGen ‘ ( topGen ‘ 𝐵 ) )  ↔  ∃ 𝑦 ( 𝑦  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑥  =  ∪  𝑦 ) ) | 
						
							| 4 |  | uniiun | ⊢ ∪  𝑦  =  ∪  𝑧  ∈  𝑦 𝑧 | 
						
							| 5 |  | simpr | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝑦  ⊆  ( topGen ‘ 𝐵 ) )  →  𝑦  ⊆  ( topGen ‘ 𝐵 ) ) | 
						
							| 6 | 5 | sselda | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝑦  ⊆  ( topGen ‘ 𝐵 ) )  ∧  𝑧  ∈  𝑦 )  →  𝑧  ∈  ( topGen ‘ 𝐵 ) ) | 
						
							| 7 |  | eltg4i | ⊢ ( 𝑧  ∈  ( topGen ‘ 𝐵 )  →  𝑧  =  ∪  ( 𝐵  ∩  𝒫  𝑧 ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝑦  ⊆  ( topGen ‘ 𝐵 ) )  ∧  𝑧  ∈  𝑦 )  →  𝑧  =  ∪  ( 𝐵  ∩  𝒫  𝑧 ) ) | 
						
							| 9 | 8 | iuneq2dv | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝑦  ⊆  ( topGen ‘ 𝐵 ) )  →  ∪  𝑧  ∈  𝑦 𝑧  =  ∪  𝑧  ∈  𝑦 ∪  ( 𝐵  ∩  𝒫  𝑧 ) ) | 
						
							| 10 | 4 9 | eqtrid | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝑦  ⊆  ( topGen ‘ 𝐵 ) )  →  ∪  𝑦  =  ∪  𝑧  ∈  𝑦 ∪  ( 𝐵  ∩  𝒫  𝑧 ) ) | 
						
							| 11 |  | iuncom4 | ⊢ ∪  𝑧  ∈  𝑦 ∪  ( 𝐵  ∩  𝒫  𝑧 )  =  ∪  ∪  𝑧  ∈  𝑦 ( 𝐵  ∩  𝒫  𝑧 ) | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝑦  ⊆  ( topGen ‘ 𝐵 ) )  →  ∪  𝑦  =  ∪  ∪  𝑧  ∈  𝑦 ( 𝐵  ∩  𝒫  𝑧 ) ) | 
						
							| 13 |  | inss1 | ⊢ ( 𝐵  ∩  𝒫  𝑧 )  ⊆  𝐵 | 
						
							| 14 | 13 | rgenw | ⊢ ∀ 𝑧  ∈  𝑦 ( 𝐵  ∩  𝒫  𝑧 )  ⊆  𝐵 | 
						
							| 15 |  | iunss | ⊢ ( ∪  𝑧  ∈  𝑦 ( 𝐵  ∩  𝒫  𝑧 )  ⊆  𝐵  ↔  ∀ 𝑧  ∈  𝑦 ( 𝐵  ∩  𝒫  𝑧 )  ⊆  𝐵 ) | 
						
							| 16 | 14 15 | mpbir | ⊢ ∪  𝑧  ∈  𝑦 ( 𝐵  ∩  𝒫  𝑧 )  ⊆  𝐵 | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑦  ⊆  ( topGen ‘ 𝐵 )  →  ∪  𝑧  ∈  𝑦 ( 𝐵  ∩  𝒫  𝑧 )  ⊆  𝐵 ) | 
						
							| 18 |  | eltg3i | ⊢ ( ( 𝐵  ∈  𝑉  ∧  ∪  𝑧  ∈  𝑦 ( 𝐵  ∩  𝒫  𝑧 )  ⊆  𝐵 )  →  ∪  ∪  𝑧  ∈  𝑦 ( 𝐵  ∩  𝒫  𝑧 )  ∈  ( topGen ‘ 𝐵 ) ) | 
						
							| 19 | 17 18 | sylan2 | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝑦  ⊆  ( topGen ‘ 𝐵 ) )  →  ∪  ∪  𝑧  ∈  𝑦 ( 𝐵  ∩  𝒫  𝑧 )  ∈  ( topGen ‘ 𝐵 ) ) | 
						
							| 20 | 12 19 | eqeltrd | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝑦  ⊆  ( topGen ‘ 𝐵 ) )  →  ∪  𝑦  ∈  ( topGen ‘ 𝐵 ) ) | 
						
							| 21 |  | eleq1 | ⊢ ( 𝑥  =  ∪  𝑦  →  ( 𝑥  ∈  ( topGen ‘ 𝐵 )  ↔  ∪  𝑦  ∈  ( topGen ‘ 𝐵 ) ) ) | 
						
							| 22 | 20 21 | syl5ibrcom | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝑦  ⊆  ( topGen ‘ 𝐵 ) )  →  ( 𝑥  =  ∪  𝑦  →  𝑥  ∈  ( topGen ‘ 𝐵 ) ) ) | 
						
							| 23 | 22 | expimpd | ⊢ ( 𝐵  ∈  𝑉  →  ( ( 𝑦  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑥  =  ∪  𝑦 )  →  𝑥  ∈  ( topGen ‘ 𝐵 ) ) ) | 
						
							| 24 | 23 | exlimdv | ⊢ ( 𝐵  ∈  𝑉  →  ( ∃ 𝑦 ( 𝑦  ⊆  ( topGen ‘ 𝐵 )  ∧  𝑥  =  ∪  𝑦 )  →  𝑥  ∈  ( topGen ‘ 𝐵 ) ) ) | 
						
							| 25 | 3 24 | biimtrid | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝑥  ∈  ( topGen ‘ ( topGen ‘ 𝐵 ) )  →  𝑥  ∈  ( topGen ‘ 𝐵 ) ) ) | 
						
							| 26 | 25 | ssrdv | ⊢ ( 𝐵  ∈  𝑉  →  ( topGen ‘ ( topGen ‘ 𝐵 ) )  ⊆  ( topGen ‘ 𝐵 ) ) | 
						
							| 27 |  | bastg | ⊢ ( 𝐵  ∈  𝑉  →  𝐵  ⊆  ( topGen ‘ 𝐵 ) ) | 
						
							| 28 |  | tgss | ⊢ ( ( ( topGen ‘ 𝐵 )  ∈  V  ∧  𝐵  ⊆  ( topGen ‘ 𝐵 ) )  →  ( topGen ‘ 𝐵 )  ⊆  ( topGen ‘ ( topGen ‘ 𝐵 ) ) ) | 
						
							| 29 | 1 27 28 | sylancr | ⊢ ( 𝐵  ∈  𝑉  →  ( topGen ‘ 𝐵 )  ⊆  ( topGen ‘ ( topGen ‘ 𝐵 ) ) ) | 
						
							| 30 | 26 29 | eqssd | ⊢ ( 𝐵  ∈  𝑉  →  ( topGen ‘ ( topGen ‘ 𝐵 ) )  =  ( topGen ‘ 𝐵 ) ) |