Step |
Hyp |
Ref |
Expression |
1 |
|
tgioo2.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
3 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
4 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
5 |
1
|
cnfldtopn |
⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
6 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
7 |
2 5 6
|
metrest |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ ℝ ⊆ ℂ ) → ( 𝐽 ↾t ℝ ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ) |
8 |
3 4 7
|
mp2an |
⊢ ( 𝐽 ↾t ℝ ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
9 |
2 8
|
tgioo |
⊢ ( topGen ‘ ran (,) ) = ( 𝐽 ↾t ℝ ) |