Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Glauco Siliprandi, 5-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 2 | 1 | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |