| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfiun3g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 3 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 4 |
3
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⊆ 𝐵 ) |
| 5 |
|
eltg3i |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⊆ 𝐵 ) → ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ( topGen ‘ 𝐵 ) ) |
| 6 |
4 5
|
sylan2 |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ( topGen ‘ 𝐵 ) ) |
| 7 |
2 6
|
eqeltrd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ ( topGen ‘ 𝐵 ) ) |