Metamath Proof Explorer


Theorem tgiun

Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion tgiun ( ( 𝐵𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → 𝑥𝐴 𝐶 ∈ ( topGen ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 dfiun3g ( ∀ 𝑥𝐴 𝐶𝐵 𝑥𝐴 𝐶 = ran ( 𝑥𝐴𝐶 ) )
2 1 adantl ( ( 𝐵𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → 𝑥𝐴 𝐶 = ran ( 𝑥𝐴𝐶 ) )
3 eqid ( 𝑥𝐴𝐶 ) = ( 𝑥𝐴𝐶 )
4 3 rnmptss ( ∀ 𝑥𝐴 𝐶𝐵 → ran ( 𝑥𝐴𝐶 ) ⊆ 𝐵 )
5 eltg3i ( ( 𝐵𝑉 ∧ ran ( 𝑥𝐴𝐶 ) ⊆ 𝐵 ) → ran ( 𝑥𝐴𝐶 ) ∈ ( topGen ‘ 𝐵 ) )
6 4 5 sylan2 ( ( 𝐵𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → ran ( 𝑥𝐴𝐶 ) ∈ ( topGen ‘ 𝐵 ) )
7 2 6 eqeltrd ( ( 𝐵𝑉 ∧ ∀ 𝑥𝐴 𝐶𝐵 ) → 𝑥𝐴 𝐶 ∈ ( topGen ‘ 𝐵 ) )