| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgldim0.g |
⊢ 𝑃 = ( 𝐸 ‘ 𝐹 ) |
| 2 |
|
tgldim0.p |
⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = 1 ) |
| 3 |
|
tgldim0.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 4 |
|
tgldim0.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 5 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
| 6 |
|
hash1snb |
⊢ ( 𝑃 ∈ V → ( ( ♯ ‘ 𝑃 ) = 1 ↔ ∃ 𝑥 𝑃 = { 𝑥 } ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( ( ♯ ‘ 𝑃 ) = 1 ↔ ∃ 𝑥 𝑃 = { 𝑥 } ) |
| 8 |
2 7
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑃 = { 𝑥 } ) |
| 9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 = { 𝑥 } ) → 𝐴 ∈ 𝑃 ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑃 = { 𝑥 } ) → 𝑃 = { 𝑥 } ) |
| 11 |
9 10
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑃 = { 𝑥 } ) → 𝐴 ∈ { 𝑥 } ) |
| 12 |
|
elsni |
⊢ ( 𝐴 ∈ { 𝑥 } → 𝐴 = 𝑥 ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑃 = { 𝑥 } ) → 𝐴 = 𝑥 ) |
| 14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 = { 𝑥 } ) → 𝐵 ∈ 𝑃 ) |
| 15 |
14 10
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑃 = { 𝑥 } ) → 𝐵 ∈ { 𝑥 } ) |
| 16 |
|
elsni |
⊢ ( 𝐵 ∈ { 𝑥 } → 𝐵 = 𝑥 ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝑃 = { 𝑥 } ) → 𝐵 = 𝑥 ) |
| 18 |
13 17
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑃 = { 𝑥 } ) → 𝐴 = 𝐵 ) |
| 19 |
8 18
|
exlimddv |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |