Step |
Hyp |
Ref |
Expression |
1 |
|
tgldimor.p |
⊢ 𝑃 = ( 𝐸 ‘ 𝐹 ) |
2 |
|
tgldimor.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
3 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
4 |
|
hashv01gt1 |
⊢ ( 𝑃 ∈ V → ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) |
6 |
|
3orass |
⊢ ( ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) ↔ ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) ) ) |
7 |
5 6
|
mpbi |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) ) |
8 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
9 |
|
1z |
⊢ 1 ∈ ℤ |
10 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℤ ) |
11 |
|
zltp1le |
⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝑃 ) ∈ ℤ ) → ( 1 < ( ♯ ‘ 𝑃 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝑃 ) ) ) |
12 |
9 10 11
|
sylancr |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝑃 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝑃 ) ) ) |
13 |
12
|
biimpac |
⊢ ( ( 1 < ( ♯ ‘ 𝑃 ) ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 1 + 1 ) ≤ ( ♯ ‘ 𝑃 ) ) |
14 |
8 13
|
eqbrtrrid |
⊢ ( ( 1 < ( ♯ ‘ 𝑃 ) ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
15 |
|
2re |
⊢ 2 ∈ ℝ |
16 |
15
|
rexri |
⊢ 2 ∈ ℝ* |
17 |
|
pnfge |
⊢ ( 2 ∈ ℝ* → 2 ≤ +∞ ) |
18 |
16 17
|
ax-mp |
⊢ 2 ≤ +∞ |
19 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑃 ) = +∞ → ( 2 ≤ ( ♯ ‘ 𝑃 ) ↔ 2 ≤ +∞ ) ) |
20 |
18 19
|
mpbiri |
⊢ ( ( ♯ ‘ 𝑃 ) = +∞ → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
21 |
20
|
adantl |
⊢ ( ( 1 < ( ♯ ‘ 𝑃 ) ∧ ( ♯ ‘ 𝑃 ) = +∞ ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
22 |
|
hashnn0pnf |
⊢ ( 𝑃 ∈ V → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑃 ) = +∞ ) ) |
23 |
3 22
|
mp1i |
⊢ ( 1 < ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑃 ) = +∞ ) ) |
24 |
14 21 23
|
mpjaodan |
⊢ ( 1 < ( ♯ ‘ 𝑃 ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
25 |
24
|
orim2i |
⊢ ( ( ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) |
26 |
25
|
orim2i |
⊢ ( ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) ) → ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) ) |
27 |
7 26
|
mp1i |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) ) |
28 |
|
ne0i |
⊢ ( 𝐴 ∈ 𝑃 → 𝑃 ≠ ∅ ) |
29 |
|
hasheq0 |
⊢ ( 𝑃 ∈ V → ( ( ♯ ‘ 𝑃 ) = 0 ↔ 𝑃 = ∅ ) ) |
30 |
3 29
|
ax-mp |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 ↔ 𝑃 = ∅ ) |
31 |
30
|
biimpi |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 → 𝑃 = ∅ ) |
32 |
31
|
necon3ai |
⊢ ( 𝑃 ≠ ∅ → ¬ ( ♯ ‘ 𝑃 ) = 0 ) |
33 |
2 28 32
|
3syl |
⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝑃 ) = 0 ) |
34 |
|
biorf |
⊢ ( ¬ ( ♯ ‘ 𝑃 ) = 0 → ( ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ↔ ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) ) ) |
35 |
33 34
|
syl |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ↔ ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) ) ) |
36 |
27 35
|
mpbird |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) |