Step |
Hyp |
Ref |
Expression |
1 |
|
tglineintmo.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tglineintmo.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
tglineintmo.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
tglineintmo.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tglineintmo.a |
⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) |
6 |
|
tglineintmo.b |
⊢ ( 𝜑 → 𝐵 ∈ ran 𝐿 ) |
7 |
|
tglineintmo.c |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
8 |
|
tglineineq.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ) |
9 |
|
tglineineq.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 ∩ 𝐵 ) ) |
10 |
1 2 3 4 5 6 7
|
tglineintmo |
⊢ ( 𝜑 → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
11 |
|
elin |
⊢ ( 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) |
12 |
8 11
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) |
13 |
|
elin |
⊢ ( 𝑌 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) |
14 |
9 13
|
sylib |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) |
15 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴 ) ) |
16 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵 ) ) |
17 |
15 16
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) ) |
18 |
|
eleq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 ∈ 𝐴 ↔ 𝑌 ∈ 𝐴 ) ) |
19 |
|
eleq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 ∈ 𝐵 ↔ 𝑌 ∈ 𝐵 ) ) |
20 |
18 19
|
anbi12d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) ) |
21 |
17 20
|
moi |
⊢ ( ( ( 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 ∩ 𝐵 ) ) ∧ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) ) → 𝑋 = 𝑌 ) |
22 |
8 9 10 12 14 21
|
syl212anc |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |