Step |
Hyp |
Ref |
Expression |
1 |
|
tglineelsb2.p |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tglineelsb2.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
tglineelsb2.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
tglineelsb2.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tglineelsb2.1 |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
6 |
|
tglineelsb2.2 |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
7 |
|
tglineelsb2.4 |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
8 |
1 2 3 4 5 6 7
|
tghilberti1 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ran 𝐿 ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ) |
9 |
1 2 3 4 5 6 7
|
tghilberti2 |
⊢ ( 𝜑 → ∃* 𝑥 ∈ ran 𝐿 ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ) |
10 |
|
reu5 |
⊢ ( ∃! 𝑥 ∈ ran 𝐿 ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ↔ ( ∃ 𝑥 ∈ ran 𝐿 ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ∃* 𝑥 ∈ ran 𝐿 ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ) ) |
11 |
8 9 10
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑥 ∈ ran 𝐿 ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ) |