Metamath Proof Explorer


Theorem tglinethrueu

Description: There is a unique line going through any two distinct points. Theorem 6.19 of Schwabhauser p. 46. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglineelsb2.p 𝐵 = ( Base ‘ 𝐺 )
tglineelsb2.i 𝐼 = ( Itv ‘ 𝐺 )
tglineelsb2.l 𝐿 = ( LineG ‘ 𝐺 )
tglineelsb2.g ( 𝜑𝐺 ∈ TarskiG )
tglineelsb2.1 ( 𝜑𝑃𝐵 )
tglineelsb2.2 ( 𝜑𝑄𝐵 )
tglineelsb2.4 ( 𝜑𝑃𝑄 )
Assertion tglinethrueu ( 𝜑 → ∃! 𝑥 ∈ ran 𝐿 ( 𝑃𝑥𝑄𝑥 ) )

Proof

Step Hyp Ref Expression
1 tglineelsb2.p 𝐵 = ( Base ‘ 𝐺 )
2 tglineelsb2.i 𝐼 = ( Itv ‘ 𝐺 )
3 tglineelsb2.l 𝐿 = ( LineG ‘ 𝐺 )
4 tglineelsb2.g ( 𝜑𝐺 ∈ TarskiG )
5 tglineelsb2.1 ( 𝜑𝑃𝐵 )
6 tglineelsb2.2 ( 𝜑𝑄𝐵 )
7 tglineelsb2.4 ( 𝜑𝑃𝑄 )
8 1 2 3 4 5 6 7 tghilberti1 ( 𝜑 → ∃ 𝑥 ∈ ran 𝐿 ( 𝑃𝑥𝑄𝑥 ) )
9 1 2 3 4 5 6 7 tghilberti2 ( 𝜑 → ∃* 𝑥 ∈ ran 𝐿 ( 𝑃𝑥𝑄𝑥 ) )
10 reu5 ( ∃! 𝑥 ∈ ran 𝐿 ( 𝑃𝑥𝑄𝑥 ) ↔ ( ∃ 𝑥 ∈ ran 𝐿 ( 𝑃𝑥𝑄𝑥 ) ∧ ∃* 𝑥 ∈ ran 𝐿 ( 𝑃𝑥𝑄𝑥 ) ) )
11 8 9 10 sylanbrc ( 𝜑 → ∃! 𝑥 ∈ ran 𝐿 ( 𝑃𝑥𝑄𝑥 ) )