Step |
Hyp |
Ref |
Expression |
1 |
|
tglineelsb2.p |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tglineelsb2.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
tglineelsb2.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
tglineelsb2.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tglndim0.d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = 1 ) |
6 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ ran 𝐿 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → ( ♯ ‘ 𝐵 ) = 1 ) |
7 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ ran 𝐿 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ 𝐵 ) |
8 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ ran 𝐿 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ 𝐵 ) |
9 |
1 6 7 8
|
tgldim0eq |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ ran 𝐿 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 = 𝑦 ) |
10 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ ran 𝐿 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ≠ 𝑦 ) |
11 |
9 10
|
pm2.21ddne |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ∈ ran 𝐿 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → ⊥ ) |
12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ran 𝐿 ) → 𝐺 ∈ TarskiG ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ran 𝐿 ) → 𝐴 ∈ ran 𝐿 ) |
14 |
1 2 3 12 13
|
tgisline |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ran 𝐿 ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) |
15 |
11 14
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ran 𝐿 ) → ⊥ ) |
16 |
15
|
inegd |
⊢ ( 𝜑 → ¬ 𝐴 ∈ ran 𝐿 ) |