Metamath Proof Explorer


Theorem tglngne

Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019)

Ref Expression
Hypotheses tglngval.p 𝑃 = ( Base ‘ 𝐺 )
tglngval.l 𝐿 = ( LineG ‘ 𝐺 )
tglngval.i 𝐼 = ( Itv ‘ 𝐺 )
tglngval.g ( 𝜑𝐺 ∈ TarskiG )
tglngval.x ( 𝜑𝑋𝑃 )
tglngval.y ( 𝜑𝑌𝑃 )
tglngne.1 ( 𝜑𝑍 ∈ ( 𝑋 𝐿 𝑌 ) )
Assertion tglngne ( 𝜑𝑋𝑌 )

Proof

Step Hyp Ref Expression
1 tglngval.p 𝑃 = ( Base ‘ 𝐺 )
2 tglngval.l 𝐿 = ( LineG ‘ 𝐺 )
3 tglngval.i 𝐼 = ( Itv ‘ 𝐺 )
4 tglngval.g ( 𝜑𝐺 ∈ TarskiG )
5 tglngval.x ( 𝜑𝑋𝑃 )
6 tglngval.y ( 𝜑𝑌𝑃 )
7 tglngne.1 ( 𝜑𝑍 ∈ ( 𝑋 𝐿 𝑌 ) )
8 df-ov ( 𝑋 𝐿 𝑌 ) = ( 𝐿 ‘ ⟨ 𝑋 , 𝑌 ⟩ )
9 7 8 eleqtrdi ( 𝜑𝑍 ∈ ( 𝐿 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) )
10 elfvdm ( 𝑍 ∈ ( 𝐿 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom 𝐿 )
11 9 10 syl ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom 𝐿 )
12 1 2 3 tglnfn ( 𝐺 ∈ TarskiG → 𝐿 Fn ( ( 𝑃 × 𝑃 ) ∖ I ) )
13 fndm ( 𝐿 Fn ( ( 𝑃 × 𝑃 ) ∖ I ) → dom 𝐿 = ( ( 𝑃 × 𝑃 ) ∖ I ) )
14 4 12 13 3syl ( 𝜑 → dom 𝐿 = ( ( 𝑃 × 𝑃 ) ∖ I ) )
15 11 14 eleqtrd ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ ( ( 𝑃 × 𝑃 ) ∖ I ) )
16 15 eldifbd ( 𝜑 → ¬ ⟨ 𝑋 , 𝑌 ⟩ ∈ I )
17 df-br ( 𝑋 I 𝑌 ↔ ⟨ 𝑋 , 𝑌 ⟩ ∈ I )
18 ideqg ( 𝑌𝑃 → ( 𝑋 I 𝑌𝑋 = 𝑌 ) )
19 6 18 syl ( 𝜑 → ( 𝑋 I 𝑌𝑋 = 𝑌 ) )
20 17 19 bitr3id ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ I ↔ 𝑋 = 𝑌 ) )
21 20 necon3bbid ( 𝜑 → ( ¬ ⟨ 𝑋 , 𝑌 ⟩ ∈ I ↔ 𝑋𝑌 ) )
22 16 21 mpbid ( 𝜑𝑋𝑌 )