Metamath Proof Explorer


Theorem tglnne0

Description: A line A has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses tglnne0.l 𝐿 = ( LineG ‘ 𝐺 )
tglnne0.g ( 𝜑𝐺 ∈ TarskiG )
tglnne0.1 ( 𝜑𝐴 ∈ ran 𝐿 )
Assertion tglnne0 ( 𝜑𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 tglnne0.l 𝐿 = ( LineG ‘ 𝐺 )
2 tglnne0.g ( 𝜑𝐺 ∈ TarskiG )
3 tglnne0.1 ( 𝜑𝐴 ∈ ran 𝐿 )
4 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
5 eqid ( Itv ‘ 𝐺 ) = ( Itv ‘ 𝐺 )
6 2 ad3antrrr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝐺 ∈ TarskiG )
7 simpllr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
8 simplr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) )
9 simprr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝑥𝑦 )
10 4 5 1 6 7 8 9 tglinerflx1 ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝑥 ∈ ( 𝑥 𝐿 𝑦 ) )
11 simprl ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝐴 = ( 𝑥 𝐿 𝑦 ) )
12 10 11 eleqtrrd ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝑥𝐴 )
13 12 ne0d ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) ) → 𝐴 ≠ ∅ )
14 4 5 1 2 3 tgisline ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥𝑦 ) )
15 13 14 r19.29vva ( 𝜑𝐴 ≠ ∅ )