| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglnne0.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 2 |
|
tglnne0.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 3 |
|
tglnne0.1 |
⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 5 |
|
eqid |
⊢ ( Itv ‘ 𝐺 ) = ( Itv ‘ 𝐺 ) |
| 6 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐺 ∈ TarskiG ) |
| 7 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 8 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 9 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ≠ 𝑦 ) |
| 10 |
4 5 1 6 7 8 9
|
tglinerflx1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ ( 𝑥 𝐿 𝑦 ) ) |
| 11 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐴 = ( 𝑥 𝐿 𝑦 ) ) |
| 12 |
10 11
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ 𝐴 ) |
| 13 |
12
|
ne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐴 ≠ ∅ ) |
| 14 |
4 5 1 2 3
|
tgisline |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 15 |
13 14
|
r19.29vva |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |