Step |
Hyp |
Ref |
Expression |
1 |
|
tglnne0.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
2 |
|
tglnne0.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
3 |
|
tglnne0.1 |
⊢ ( 𝜑 → 𝐴 ∈ ran 𝐿 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( Itv ‘ 𝐺 ) = ( Itv ‘ 𝐺 ) |
6 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐺 ∈ TarskiG ) |
7 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
8 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
9 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ≠ 𝑦 ) |
10 |
4 5 1 6 7 8 9
|
tglinerflx1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ ( 𝑥 𝐿 𝑦 ) ) |
11 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐴 = ( 𝑥 𝐿 𝑦 ) ) |
12 |
10 11
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ 𝐴 ) |
13 |
12
|
ne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐴 ≠ ∅ ) |
14 |
4 5 1 2 3
|
tgisline |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ∃ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝐴 = ( 𝑥 𝐿 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) |
15 |
13 14
|
r19.29vva |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |