Metamath Proof Explorer


Theorem tglnpt

Description: Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019)

Ref Expression
Hypotheses tglng.p 𝑃 = ( Base ‘ 𝐺 )
tglng.l 𝐿 = ( LineG ‘ 𝐺 )
tglng.i 𝐼 = ( Itv ‘ 𝐺 )
tglnpt.g ( 𝜑𝐺 ∈ TarskiG )
tglnpt.a ( 𝜑𝐴 ∈ ran 𝐿 )
tglnpt.x ( 𝜑𝑋𝐴 )
Assertion tglnpt ( 𝜑𝑋𝑃 )

Proof

Step Hyp Ref Expression
1 tglng.p 𝑃 = ( Base ‘ 𝐺 )
2 tglng.l 𝐿 = ( LineG ‘ 𝐺 )
3 tglng.i 𝐼 = ( Itv ‘ 𝐺 )
4 tglnpt.g ( 𝜑𝐺 ∈ TarskiG )
5 tglnpt.a ( 𝜑𝐴 ∈ ran 𝐿 )
6 tglnpt.x ( 𝜑𝑋𝐴 )
7 1 2 3 tglnunirn ( 𝐺 ∈ TarskiG → ran 𝐿𝑃 )
8 4 7 syl ( 𝜑 ran 𝐿𝑃 )
9 elssuni ( 𝐴 ∈ ran 𝐿𝐴 ran 𝐿 )
10 5 9 syl ( 𝜑𝐴 ran 𝐿 )
11 10 6 sseldd ( 𝜑𝑋 ran 𝐿 )
12 8 11 sseldd ( 𝜑𝑋𝑃 )