Metamath Proof Explorer


Theorem tglnssp

Description: Lines are subset of the geometry base set. That is, lines are sets of points. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tglngval.p 𝑃 = ( Base ‘ 𝐺 )
tglngval.l 𝐿 = ( LineG ‘ 𝐺 )
tglngval.i 𝐼 = ( Itv ‘ 𝐺 )
tglngval.g ( 𝜑𝐺 ∈ TarskiG )
tglngval.x ( 𝜑𝑋𝑃 )
tglngval.y ( 𝜑𝑌𝑃 )
tglngval.z ( 𝜑𝑋𝑌 )
Assertion tglnssp ( 𝜑 → ( 𝑋 𝐿 𝑌 ) ⊆ 𝑃 )

Proof

Step Hyp Ref Expression
1 tglngval.p 𝑃 = ( Base ‘ 𝐺 )
2 tglngval.l 𝐿 = ( LineG ‘ 𝐺 )
3 tglngval.i 𝐼 = ( Itv ‘ 𝐺 )
4 tglngval.g ( 𝜑𝐺 ∈ TarskiG )
5 tglngval.x ( 𝜑𝑋𝑃 )
6 tglngval.y ( 𝜑𝑌𝑃 )
7 tglngval.z ( 𝜑𝑋𝑌 )
8 1 2 3 4 5 6 7 tglngval ( 𝜑 → ( 𝑋 𝐿 𝑌 ) = { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } )
9 ssrab2 { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } ⊆ 𝑃
10 8 9 eqsstrdi ( 𝜑 → ( 𝑋 𝐿 𝑌 ) ⊆ 𝑃 )