Metamath Proof Explorer


Theorem tglnunirn

Description: Lines are sets of points. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglng.p 𝑃 = ( Base ‘ 𝐺 )
tglng.l 𝐿 = ( LineG ‘ 𝐺 )
tglng.i 𝐼 = ( Itv ‘ 𝐺 )
Assertion tglnunirn ( 𝐺 ∈ TarskiG → ran 𝐿𝑃 )

Proof

Step Hyp Ref Expression
1 tglng.p 𝑃 = ( Base ‘ 𝐺 )
2 tglng.l 𝐿 = ( LineG ‘ 𝐺 )
3 tglng.i 𝐼 = ( Itv ‘ 𝐺 )
4 1 2 3 tglng ( 𝐺 ∈ TarskiG → 𝐿 = ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) )
5 4 rneqd ( 𝐺 ∈ TarskiG → ran 𝐿 = ran ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) )
6 5 eleq2d ( 𝐺 ∈ TarskiG → ( 𝑝 ∈ ran 𝐿𝑝 ∈ ran ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ) )
7 6 biimpa ( ( 𝐺 ∈ TarskiG ∧ 𝑝 ∈ ran 𝐿 ) → 𝑝 ∈ ran ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) )
8 eqid ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) = ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } )
9 1 fvexi 𝑃 ∈ V
10 9 rabex { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ∈ V
11 8 10 elrnmpo ( 𝑝 ∈ ran ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ↔ ∃ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) 𝑝 = { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } )
12 ssrab2 { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ⊆ 𝑃
13 sseq1 ( 𝑝 = { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } → ( 𝑝𝑃 ↔ { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ⊆ 𝑃 ) )
14 12 13 mpbiri ( 𝑝 = { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } → 𝑝𝑃 )
15 14 rexlimivw ( ∃ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) 𝑝 = { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } → 𝑝𝑃 )
16 15 rexlimivw ( ∃ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) 𝑝 = { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } → 𝑝𝑃 )
17 11 16 sylbi ( 𝑝 ∈ ran ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) → 𝑝𝑃 )
18 7 17 syl ( ( 𝐺 ∈ TarskiG ∧ 𝑝 ∈ ran 𝐿 ) → 𝑝𝑃 )
19 18 ralrimiva ( 𝐺 ∈ TarskiG → ∀ 𝑝 ∈ ran 𝐿 𝑝𝑃 )
20 unissb ( ran 𝐿𝑃 ↔ ∀ 𝑝 ∈ ran 𝐿 𝑝𝑃 )
21 19 20 sylibr ( 𝐺 ∈ TarskiG → ran 𝐿𝑃 )