Metamath Proof Explorer


Theorem tglowdim1i

Description: Lower dimension axiom for one dimension. (Contributed by Thierry Arnoux, 28-May-2019)

Ref Expression
Hypotheses tglowdim1.p 𝑃 = ( Base ‘ 𝐺 )
tglowdim1.d = ( dist ‘ 𝐺 )
tglowdim1.i 𝐼 = ( Itv ‘ 𝐺 )
tglowdim1.g ( 𝜑𝐺 ∈ TarskiG )
tglowdim1.1 ( 𝜑 → 2 ≤ ( ♯ ‘ 𝑃 ) )
tglowdim1i.1 ( 𝜑𝑋𝑃 )
Assertion tglowdim1i ( 𝜑 → ∃ 𝑦𝑃 𝑋𝑦 )

Proof

Step Hyp Ref Expression
1 tglowdim1.p 𝑃 = ( Base ‘ 𝐺 )
2 tglowdim1.d = ( dist ‘ 𝐺 )
3 tglowdim1.i 𝐼 = ( Itv ‘ 𝐺 )
4 tglowdim1.g ( 𝜑𝐺 ∈ TarskiG )
5 tglowdim1.1 ( 𝜑 → 2 ≤ ( ♯ ‘ 𝑃 ) )
6 tglowdim1i.1 ( 𝜑𝑋𝑃 )
7 4 adantr ( ( 𝜑 ∧ ∀ 𝑦𝑃 𝑋 = 𝑦 ) → 𝐺 ∈ TarskiG )
8 5 adantr ( ( 𝜑 ∧ ∀ 𝑦𝑃 𝑋 = 𝑦 ) → 2 ≤ ( ♯ ‘ 𝑃 ) )
9 1 2 3 7 8 tglowdim1 ( ( 𝜑 ∧ ∀ 𝑦𝑃 𝑋 = 𝑦 ) → ∃ 𝑎𝑃𝑏𝑃 𝑎𝑏 )
10 eqeq2 ( 𝑦 = 𝑎 → ( 𝑋 = 𝑦𝑋 = 𝑎 ) )
11 simpllr ( ( ( ( 𝜑 ∧ ∀ 𝑦𝑃 𝑋 = 𝑦 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) → ∀ 𝑦𝑃 𝑋 = 𝑦 )
12 simplr ( ( ( ( 𝜑 ∧ ∀ 𝑦𝑃 𝑋 = 𝑦 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) → 𝑎𝑃 )
13 10 11 12 rspcdva ( ( ( ( 𝜑 ∧ ∀ 𝑦𝑃 𝑋 = 𝑦 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) → 𝑋 = 𝑎 )
14 eqeq2 ( 𝑦 = 𝑏 → ( 𝑋 = 𝑦𝑋 = 𝑏 ) )
15 14 rspccva ( ( ∀ 𝑦𝑃 𝑋 = 𝑦𝑏𝑃 ) → 𝑋 = 𝑏 )
16 15 ad4ant24 ( ( ( ( 𝜑 ∧ ∀ 𝑦𝑃 𝑋 = 𝑦 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) → 𝑋 = 𝑏 )
17 13 16 eqtr3d ( ( ( ( 𝜑 ∧ ∀ 𝑦𝑃 𝑋 = 𝑦 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) → 𝑎 = 𝑏 )
18 nne ( ¬ 𝑎𝑏𝑎 = 𝑏 )
19 17 18 sylibr ( ( ( ( 𝜑 ∧ ∀ 𝑦𝑃 𝑋 = 𝑦 ) ∧ 𝑎𝑃 ) ∧ 𝑏𝑃 ) → ¬ 𝑎𝑏 )
20 19 nrexdv ( ( ( 𝜑 ∧ ∀ 𝑦𝑃 𝑋 = 𝑦 ) ∧ 𝑎𝑃 ) → ¬ ∃ 𝑏𝑃 𝑎𝑏 )
21 20 nrexdv ( ( 𝜑 ∧ ∀ 𝑦𝑃 𝑋 = 𝑦 ) → ¬ ∃ 𝑎𝑃𝑏𝑃 𝑎𝑏 )
22 9 21 pm2.65da ( 𝜑 → ¬ ∀ 𝑦𝑃 𝑋 = 𝑦 )
23 rexnal ( ∃ 𝑦𝑃 ¬ 𝑋 = 𝑦 ↔ ¬ ∀ 𝑦𝑃 𝑋 = 𝑦 )
24 22 23 sylibr ( 𝜑 → ∃ 𝑦𝑃 ¬ 𝑋 = 𝑦 )
25 df-ne ( 𝑋𝑦 ↔ ¬ 𝑋 = 𝑦 )
26 25 rexbii ( ∃ 𝑦𝑃 𝑋𝑦 ↔ ∃ 𝑦𝑃 ¬ 𝑋 = 𝑦 )
27 24 26 sylibr ( 𝜑 → ∃ 𝑦𝑃 𝑋𝑦 )