Step |
Hyp |
Ref |
Expression |
1 |
|
tglowdim1.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tglowdim1.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
tglowdim1.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
tglowdim1.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tglowdim1.1 |
⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
6 |
|
tglowdim1i.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) → 𝐺 ∈ TarskiG ) |
8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
9 |
1 2 3 7 8
|
tglowdim1 |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) → ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 𝑎 ≠ 𝑏 ) |
10 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑎 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑎 ) ) |
11 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) |
12 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → 𝑎 ∈ 𝑃 ) |
13 |
10 11 12
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → 𝑋 = 𝑎 ) |
14 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑏 ) ) |
15 |
14
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ∧ 𝑏 ∈ 𝑃 ) → 𝑋 = 𝑏 ) |
16 |
15
|
ad4ant24 |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → 𝑋 = 𝑏 ) |
17 |
13 16
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → 𝑎 = 𝑏 ) |
18 |
|
nne |
⊢ ( ¬ 𝑎 ≠ 𝑏 ↔ 𝑎 = 𝑏 ) |
19 |
17 18
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) ∧ 𝑎 ∈ 𝑃 ) ∧ 𝑏 ∈ 𝑃 ) → ¬ 𝑎 ≠ 𝑏 ) |
20 |
19
|
nrexdv |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) ∧ 𝑎 ∈ 𝑃 ) → ¬ ∃ 𝑏 ∈ 𝑃 𝑎 ≠ 𝑏 ) |
21 |
20
|
nrexdv |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) → ¬ ∃ 𝑎 ∈ 𝑃 ∃ 𝑏 ∈ 𝑃 𝑎 ≠ 𝑏 ) |
22 |
9 21
|
pm2.65da |
⊢ ( 𝜑 → ¬ ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) |
23 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝑃 𝑋 = 𝑦 ) |
24 |
22 23
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦 ) |
25 |
|
df-ne |
⊢ ( 𝑋 ≠ 𝑦 ↔ ¬ 𝑋 = 𝑦 ) |
26 |
25
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝑃 𝑋 ≠ 𝑦 ↔ ∃ 𝑦 ∈ 𝑃 ¬ 𝑋 = 𝑦 ) |
27 |
24 26
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝑃 𝑋 ≠ 𝑦 ) |