| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oddz | 
							⊢ ( 𝑛  ∈   Odd   →  𝑛  ∈  ℤ )  | 
						
						
							| 2 | 
							
								1
							 | 
							zred | 
							⊢ ( 𝑛  ∈   Odd   →  𝑛  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							10re | 
							⊢ ; 1 0  ∈  ℝ  | 
						
						
							| 4 | 
							
								
							 | 
							2nn0 | 
							⊢ 2  ∈  ℕ0  | 
						
						
							| 5 | 
							
								
							 | 
							7nn | 
							⊢ 7  ∈  ℕ  | 
						
						
							| 6 | 
							
								4 5
							 | 
							decnncl | 
							⊢ ; 2 7  ∈  ℕ  | 
						
						
							| 7 | 
							
								6
							 | 
							nnnn0i | 
							⊢ ; 2 7  ∈  ℕ0  | 
						
						
							| 8 | 
							
								
							 | 
							reexpcl | 
							⊢ ( ( ; 1 0  ∈  ℝ  ∧  ; 2 7  ∈  ℕ0 )  →  ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ )  | 
						
						
							| 9 | 
							
								3 7 8
							 | 
							mp2an | 
							⊢ ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ  | 
						
						
							| 10 | 
							
								
							 | 
							lelttric | 
							⊢ ( ( 𝑛  ∈  ℝ  ∧  ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ )  →  ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  ∨  ( ; 1 0 ↑ ; 2 7 )  <  𝑛 ) )  | 
						
						
							| 11 | 
							
								2 9 10
							 | 
							sylancl | 
							⊢ ( 𝑛  ∈   Odd   →  ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  ∨  ( ; 1 0 ↑ ; 2 7 )  <  𝑛 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							tgoldbachlt | 
							⊢ ∃ 𝑚  ∈  ℕ ( ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚  ∧  ∀ 𝑜  ∈   Odd  ( ( 7  <  𝑜  ∧  𝑜  <  𝑚 )  →  𝑜  ∈   GoldbachOdd  ) )  | 
						
						
							| 13 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑜  =  𝑛  →  ( 7  <  𝑜  ↔  7  <  𝑛 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑜  =  𝑛  →  ( 𝑜  <  𝑚  ↔  𝑛  <  𝑚 ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							anbi12d | 
							⊢ ( 𝑜  =  𝑛  →  ( ( 7  <  𝑜  ∧  𝑜  <  𝑚 )  ↔  ( 7  <  𝑛  ∧  𝑛  <  𝑚 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑜  =  𝑛  →  ( 𝑜  ∈   GoldbachOdd   ↔  𝑛  ∈   GoldbachOdd  ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							imbi12d | 
							⊢ ( 𝑜  =  𝑛  →  ( ( ( 7  <  𝑜  ∧  𝑜  <  𝑚 )  →  𝑜  ∈   GoldbachOdd  )  ↔  ( ( 7  <  𝑛  ∧  𝑛  <  𝑚 )  →  𝑛  ∈   GoldbachOdd  ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							rspcv | 
							⊢ ( 𝑛  ∈   Odd   →  ( ∀ 𝑜  ∈   Odd  ( ( 7  <  𝑜  ∧  𝑜  <  𝑚 )  →  𝑜  ∈   GoldbachOdd  )  →  ( ( 7  <  𝑛  ∧  𝑛  <  𝑚 )  →  𝑛  ∈   GoldbachOdd  ) ) )  | 
						
						
							| 19 | 
							
								9
							 | 
							recni | 
							⊢ ( ; 1 0 ↑ ; 2 7 )  ∈  ℂ  | 
						
						
							| 20 | 
							
								19
							 | 
							mullidi | 
							⊢ ( 1  ·  ( ; 1 0 ↑ ; 2 7 ) )  =  ( ; 1 0 ↑ ; 2 7 )  | 
						
						
							| 21 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 22 | 
							
								
							 | 
							8re | 
							⊢ 8  ∈  ℝ  | 
						
						
							| 23 | 
							
								21 22
							 | 
							pm3.2i | 
							⊢ ( 1  ∈  ℝ  ∧  8  ∈  ℝ )  | 
						
						
							| 24 | 
							
								23
							 | 
							a1i | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  ( 1  ∈  ℝ  ∧  8  ∈  ℝ ) )  | 
						
						
							| 25 | 
							
								
							 | 
							0le1 | 
							⊢ 0  ≤  1  | 
						
						
							| 26 | 
							
								
							 | 
							1lt8 | 
							⊢ 1  <  8  | 
						
						
							| 27 | 
							
								25 26
							 | 
							pm3.2i | 
							⊢ ( 0  ≤  1  ∧  1  <  8 )  | 
						
						
							| 28 | 
							
								27
							 | 
							a1i | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  ( 0  ≤  1  ∧  1  <  8 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							3nn | 
							⊢ 3  ∈  ℕ  | 
						
						
							| 30 | 
							
								29
							 | 
							decnncl2 | 
							⊢ ; 3 0  ∈  ℕ  | 
						
						
							| 31 | 
							
								30
							 | 
							nnnn0i | 
							⊢ ; 3 0  ∈  ℕ0  | 
						
						
							| 32 | 
							
								
							 | 
							reexpcl | 
							⊢ ( ( ; 1 0  ∈  ℝ  ∧  ; 3 0  ∈  ℕ0 )  →  ( ; 1 0 ↑ ; 3 0 )  ∈  ℝ )  | 
						
						
							| 33 | 
							
								3 31 32
							 | 
							mp2an | 
							⊢ ( ; 1 0 ↑ ; 3 0 )  ∈  ℝ  | 
						
						
							| 34 | 
							
								9 33
							 | 
							pm3.2i | 
							⊢ ( ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ  ∧  ( ; 1 0 ↑ ; 3 0 )  ∈  ℝ )  | 
						
						
							| 35 | 
							
								34
							 | 
							a1i | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  ( ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ  ∧  ( ; 1 0 ↑ ; 3 0 )  ∈  ℝ ) )  | 
						
						
							| 36 | 
							
								
							 | 
							10nn0 | 
							⊢ ; 1 0  ∈  ℕ0  | 
						
						
							| 37 | 
							
								36 7
							 | 
							nn0expcli | 
							⊢ ( ; 1 0 ↑ ; 2 7 )  ∈  ℕ0  | 
						
						
							| 38 | 
							
								37
							 | 
							nn0ge0i | 
							⊢ 0  ≤  ( ; 1 0 ↑ ; 2 7 )  | 
						
						
							| 39 | 
							
								6
							 | 
							nnzi | 
							⊢ ; 2 7  ∈  ℤ  | 
						
						
							| 40 | 
							
								30
							 | 
							nnzi | 
							⊢ ; 3 0  ∈  ℤ  | 
						
						
							| 41 | 
							
								3 39 40
							 | 
							3pm3.2i | 
							⊢ ( ; 1 0  ∈  ℝ  ∧  ; 2 7  ∈  ℤ  ∧  ; 3 0  ∈  ℤ )  | 
						
						
							| 42 | 
							
								
							 | 
							1lt10 | 
							⊢ 1  <  ; 1 0  | 
						
						
							| 43 | 
							
								
							 | 
							3nn0 | 
							⊢ 3  ∈  ℕ0  | 
						
						
							| 44 | 
							
								
							 | 
							7nn0 | 
							⊢ 7  ∈  ℕ0  | 
						
						
							| 45 | 
							
								
							 | 
							0nn0 | 
							⊢ 0  ∈  ℕ0  | 
						
						
							| 46 | 
							
								
							 | 
							7lt10 | 
							⊢ 7  <  ; 1 0  | 
						
						
							| 47 | 
							
								
							 | 
							2lt3 | 
							⊢ 2  <  3  | 
						
						
							| 48 | 
							
								4 43 44 45 46 47
							 | 
							decltc | 
							⊢ ; 2 7  <  ; 3 0  | 
						
						
							| 49 | 
							
								42 48
							 | 
							pm3.2i | 
							⊢ ( 1  <  ; 1 0  ∧  ; 2 7  <  ; 3 0 )  | 
						
						
							| 50 | 
							
								
							 | 
							ltexp2a | 
							⊢ ( ( ( ; 1 0  ∈  ℝ  ∧  ; 2 7  ∈  ℤ  ∧  ; 3 0  ∈  ℤ )  ∧  ( 1  <  ; 1 0  ∧  ; 2 7  <  ; 3 0 ) )  →  ( ; 1 0 ↑ ; 2 7 )  <  ( ; 1 0 ↑ ; 3 0 ) )  | 
						
						
							| 51 | 
							
								41 49 50
							 | 
							mp2an | 
							⊢ ( ; 1 0 ↑ ; 2 7 )  <  ( ; 1 0 ↑ ; 3 0 )  | 
						
						
							| 52 | 
							
								38 51
							 | 
							pm3.2i | 
							⊢ ( 0  ≤  ( ; 1 0 ↑ ; 2 7 )  ∧  ( ; 1 0 ↑ ; 2 7 )  <  ( ; 1 0 ↑ ; 3 0 ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							a1i | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  ( 0  ≤  ( ; 1 0 ↑ ; 2 7 )  ∧  ( ; 1 0 ↑ ; 2 7 )  <  ( ; 1 0 ↑ ; 3 0 ) ) )  | 
						
						
							| 54 | 
							
								
							 | 
							ltmul12a | 
							⊢ ( ( ( ( 1  ∈  ℝ  ∧  8  ∈  ℝ )  ∧  ( 0  ≤  1  ∧  1  <  8 ) )  ∧  ( ( ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ  ∧  ( ; 1 0 ↑ ; 3 0 )  ∈  ℝ )  ∧  ( 0  ≤  ( ; 1 0 ↑ ; 2 7 )  ∧  ( ; 1 0 ↑ ; 2 7 )  <  ( ; 1 0 ↑ ; 3 0 ) ) ) )  →  ( 1  ·  ( ; 1 0 ↑ ; 2 7 ) )  <  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) ) )  | 
						
						
							| 55 | 
							
								24 28 35 53 54
							 | 
							syl22anc | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  ( 1  ·  ( ; 1 0 ↑ ; 2 7 ) )  <  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) ) )  | 
						
						
							| 56 | 
							
								20 55
							 | 
							eqbrtrrid | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  ( ; 1 0 ↑ ; 2 7 )  <  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) ) )  | 
						
						
							| 57 | 
							
								9
							 | 
							a1i | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ )  | 
						
						
							| 58 | 
							
								22 33
							 | 
							remulcli | 
							⊢ ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  ∈  ℝ  | 
						
						
							| 59 | 
							
								58
							 | 
							a1i | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  ∈  ℝ )  | 
						
						
							| 60 | 
							
								
							 | 
							nnre | 
							⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantl | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℝ )  | 
						
						
							| 62 | 
							
								
							 | 
							lttr | 
							⊢ ( ( ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ  ∧  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  ∈  ℝ  ∧  𝑚  ∈  ℝ )  →  ( ( ( ; 1 0 ↑ ; 2 7 )  <  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  ∧  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚 )  →  ( ; 1 0 ↑ ; 2 7 )  <  𝑚 ) )  | 
						
						
							| 63 | 
							
								57 59 61 62
							 | 
							syl3anc | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  ( ( ( ; 1 0 ↑ ; 2 7 )  <  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  ∧  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚 )  →  ( ; 1 0 ↑ ; 2 7 )  <  𝑚 ) )  | 
						
						
							| 64 | 
							
								56 63
							 | 
							mpand | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  ( ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚  →  ( ; 1 0 ↑ ; 2 7 )  <  𝑚 ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							imp | 
							⊢ ( ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  ∧  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚 )  →  ( ; 1 0 ↑ ; 2 7 )  <  𝑚 )  | 
						
						
							| 66 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  𝑛  ∈  ℝ )  | 
						
						
							| 67 | 
							
								66 57 61
							 | 
							3jca | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  ( 𝑛  ∈  ℝ  ∧  ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							adantr | 
							⊢ ( ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  ∧  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚 )  →  ( 𝑛  ∈  ℝ  ∧  ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ  ∧  𝑚  ∈  ℝ ) )  | 
						
						
							| 69 | 
							
								
							 | 
							lelttr | 
							⊢ ( ( 𝑛  ∈  ℝ  ∧  ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ  ∧  𝑚  ∈  ℝ )  →  ( ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  ∧  ( ; 1 0 ↑ ; 2 7 )  <  𝑚 )  →  𝑛  <  𝑚 ) )  | 
						
						
							| 70 | 
							
								68 69
							 | 
							syl | 
							⊢ ( ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  ∧  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚 )  →  ( ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  ∧  ( ; 1 0 ↑ ; 2 7 )  <  𝑚 )  →  𝑛  <  𝑚 ) )  | 
						
						
							| 71 | 
							
								65 70
							 | 
							mpan2d | 
							⊢ ( ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  ∧  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚 )  →  ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  →  𝑛  <  𝑚 ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							imp | 
							⊢ ( ( ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  ∧  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚 )  ∧  𝑛  ≤  ( ; 1 0 ↑ ; 2 7 ) )  →  𝑛  <  𝑚 )  | 
						
						
							| 73 | 
							
								72
							 | 
							anim1i | 
							⊢ ( ( ( ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  ∧  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚 )  ∧  𝑛  ≤  ( ; 1 0 ↑ ; 2 7 ) )  ∧  7  <  𝑛 )  →  ( 𝑛  <  𝑚  ∧  7  <  𝑛 ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							ancomd | 
							⊢ ( ( ( ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  ∧  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚 )  ∧  𝑛  ≤  ( ; 1 0 ↑ ; 2 7 ) )  ∧  7  <  𝑛 )  →  ( 7  <  𝑛  ∧  𝑛  <  𝑚 ) )  | 
						
						
							| 75 | 
							
								
							 | 
							pm2.27 | 
							⊢ ( ( 7  <  𝑛  ∧  𝑛  <  𝑚 )  →  ( ( ( 7  <  𝑛  ∧  𝑛  <  𝑚 )  →  𝑛  ∈   GoldbachOdd  )  →  𝑛  ∈   GoldbachOdd  ) )  | 
						
						
							| 76 | 
							
								74 75
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  ∧  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚 )  ∧  𝑛  ≤  ( ; 1 0 ↑ ; 2 7 ) )  ∧  7  <  𝑛 )  →  ( ( ( 7  <  𝑛  ∧  𝑛  <  𝑚 )  →  𝑛  ∈   GoldbachOdd  )  →  𝑛  ∈   GoldbachOdd  ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							ex | 
							⊢ ( ( ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  ∧  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚 )  ∧  𝑛  ≤  ( ; 1 0 ↑ ; 2 7 ) )  →  ( 7  <  𝑛  →  ( ( ( 7  <  𝑛  ∧  𝑛  <  𝑚 )  →  𝑛  ∈   GoldbachOdd  )  →  𝑛  ∈   GoldbachOdd  ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							com23 | 
							⊢ ( ( ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  ∧  ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚 )  ∧  𝑛  ≤  ( ; 1 0 ↑ ; 2 7 ) )  →  ( ( ( 7  <  𝑛  ∧  𝑛  <  𝑚 )  →  𝑛  ∈   GoldbachOdd  )  →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							exp41 | 
							⊢ ( 𝑛  ∈   Odd   →  ( 𝑚  ∈  ℕ  →  ( ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚  →  ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  →  ( ( ( 7  <  𝑛  ∧  𝑛  <  𝑚 )  →  𝑛  ∈   GoldbachOdd  )  →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							com25 | 
							⊢ ( 𝑛  ∈   Odd   →  ( ( ( 7  <  𝑛  ∧  𝑛  <  𝑚 )  →  𝑛  ∈   GoldbachOdd  )  →  ( ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚  →  ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  →  ( 𝑚  ∈  ℕ  →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) ) ) )  | 
						
						
							| 81 | 
							
								18 80
							 | 
							syld | 
							⊢ ( 𝑛  ∈   Odd   →  ( ∀ 𝑜  ∈   Odd  ( ( 7  <  𝑜  ∧  𝑜  <  𝑚 )  →  𝑜  ∈   GoldbachOdd  )  →  ( ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚  →  ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  →  ( 𝑚  ∈  ℕ  →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) ) ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							com15 | 
							⊢ ( 𝑚  ∈  ℕ  →  ( ∀ 𝑜  ∈   Odd  ( ( 7  <  𝑜  ∧  𝑜  <  𝑚 )  →  𝑜  ∈   GoldbachOdd  )  →  ( ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚  →  ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  →  ( 𝑛  ∈   Odd   →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							com23 | 
							⊢ ( 𝑚  ∈  ℕ  →  ( ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚  →  ( ∀ 𝑜  ∈   Odd  ( ( 7  <  𝑜  ∧  𝑜  <  𝑚 )  →  𝑜  ∈   GoldbachOdd  )  →  ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  →  ( 𝑛  ∈   Odd   →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							imp32 | 
							⊢ ( ( 𝑚  ∈  ℕ  ∧  ( ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚  ∧  ∀ 𝑜  ∈   Odd  ( ( 7  <  𝑜  ∧  𝑜  <  𝑚 )  →  𝑜  ∈   GoldbachOdd  ) ) )  →  ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  →  ( 𝑛  ∈   Odd   →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							rexlimiva | 
							⊢ ( ∃ 𝑚  ∈  ℕ ( ( 8  ·  ( ; 1 0 ↑ ; 3 0 ) )  <  𝑚  ∧  ∀ 𝑜  ∈   Odd  ( ( 7  <  𝑜  ∧  𝑜  <  𝑚 )  →  𝑜  ∈   GoldbachOdd  ) )  →  ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  →  ( 𝑛  ∈   Odd   →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) )  | 
						
						
							| 86 | 
							
								12 85
							 | 
							ax-mp | 
							⊢ ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  →  ( 𝑛  ∈   Odd   →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							tgoldbachgtALTV | 
							⊢ ∃ 𝑚  ∈  ℕ ( 𝑚  ≤  ( ; 1 0 ↑ ; 2 7 )  ∧  ∀ 𝑜  ∈   Odd  ( 𝑚  <  𝑜  →  𝑜  ∈   GoldbachOdd  ) )  | 
						
						
							| 88 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑜  =  𝑛  →  ( 𝑚  <  𝑜  ↔  𝑚  <  𝑛 ) )  | 
						
						
							| 89 | 
							
								88 16
							 | 
							imbi12d | 
							⊢ ( 𝑜  =  𝑛  →  ( ( 𝑚  <  𝑜  →  𝑜  ∈   GoldbachOdd  )  ↔  ( 𝑚  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							rspcv | 
							⊢ ( 𝑛  ∈   Odd   →  ( ∀ 𝑜  ∈   Odd  ( 𝑚  <  𝑜  →  𝑜  ∈   GoldbachOdd  )  →  ( 𝑚  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) )  | 
						
						
							| 91 | 
							
								
							 | 
							lelttr | 
							⊢ ( ( 𝑚  ∈  ℝ  ∧  ( ; 1 0 ↑ ; 2 7 )  ∈  ℝ  ∧  𝑛  ∈  ℝ )  →  ( ( 𝑚  ≤  ( ; 1 0 ↑ ; 2 7 )  ∧  ( ; 1 0 ↑ ; 2 7 )  <  𝑛 )  →  𝑚  <  𝑛 ) )  | 
						
						
							| 92 | 
							
								61 57 66 91
							 | 
							syl3anc | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  ≤  ( ; 1 0 ↑ ; 2 7 )  ∧  ( ; 1 0 ↑ ; 2 7 )  <  𝑛 )  →  𝑚  <  𝑛 ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							expcomd | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  𝑚  ∈  ℕ )  →  ( ( ; 1 0 ↑ ; 2 7 )  <  𝑛  →  ( 𝑚  ≤  ( ; 1 0 ↑ ; 2 7 )  →  𝑚  <  𝑛 ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							ex | 
							⊢ ( 𝑛  ∈   Odd   →  ( 𝑚  ∈  ℕ  →  ( ( ; 1 0 ↑ ; 2 7 )  <  𝑛  →  ( 𝑚  ≤  ( ; 1 0 ↑ ; 2 7 )  →  𝑚  <  𝑛 ) ) ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							com23 | 
							⊢ ( 𝑛  ∈   Odd   →  ( ( ; 1 0 ↑ ; 2 7 )  <  𝑛  →  ( 𝑚  ∈  ℕ  →  ( 𝑚  ≤  ( ; 1 0 ↑ ; 2 7 )  →  𝑚  <  𝑛 ) ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							imp43 | 
							⊢ ( ( ( 𝑛  ∈   Odd   ∧  ( ; 1 0 ↑ ; 2 7 )  <  𝑛 )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( ; 1 0 ↑ ; 2 7 ) ) )  →  𝑚  <  𝑛 )  | 
						
						
							| 97 | 
							
								
							 | 
							pm2.27 | 
							⊢ ( 𝑚  <  𝑛  →  ( ( 𝑚  <  𝑛  →  𝑛  ∈   GoldbachOdd  )  →  𝑛  ∈   GoldbachOdd  ) )  | 
						
						
							| 98 | 
							
								96 97
							 | 
							syl | 
							⊢ ( ( ( 𝑛  ∈   Odd   ∧  ( ; 1 0 ↑ ; 2 7 )  <  𝑛 )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( ; 1 0 ↑ ; 2 7 ) ) )  →  ( ( 𝑚  <  𝑛  →  𝑛  ∈   GoldbachOdd  )  →  𝑛  ∈   GoldbachOdd  ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							a1dd | 
							⊢ ( ( ( 𝑛  ∈   Odd   ∧  ( ; 1 0 ↑ ; 2 7 )  <  𝑛 )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( ; 1 0 ↑ ; 2 7 ) ) )  →  ( ( 𝑚  <  𝑛  →  𝑛  ∈   GoldbachOdd  )  →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							ex | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  ( ; 1 0 ↑ ; 2 7 )  <  𝑛 )  →  ( ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( ; 1 0 ↑ ; 2 7 ) )  →  ( ( 𝑚  <  𝑛  →  𝑛  ∈   GoldbachOdd  )  →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							com23 | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  ( ; 1 0 ↑ ; 2 7 )  <  𝑛 )  →  ( ( 𝑚  <  𝑛  →  𝑛  ∈   GoldbachOdd  )  →  ( ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( ; 1 0 ↑ ; 2 7 ) )  →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							ex | 
							⊢ ( 𝑛  ∈   Odd   →  ( ( ; 1 0 ↑ ; 2 7 )  <  𝑛  →  ( ( 𝑚  <  𝑛  →  𝑛  ∈   GoldbachOdd  )  →  ( ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( ; 1 0 ↑ ; 2 7 ) )  →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							com23 | 
							⊢ ( 𝑛  ∈   Odd   →  ( ( 𝑚  <  𝑛  →  𝑛  ∈   GoldbachOdd  )  →  ( ( ; 1 0 ↑ ; 2 7 )  <  𝑛  →  ( ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( ; 1 0 ↑ ; 2 7 ) )  →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) ) )  | 
						
						
							| 104 | 
							
								90 103
							 | 
							syld | 
							⊢ ( 𝑛  ∈   Odd   →  ( ∀ 𝑜  ∈   Odd  ( 𝑚  <  𝑜  →  𝑜  ∈   GoldbachOdd  )  →  ( ( ; 1 0 ↑ ; 2 7 )  <  𝑛  →  ( ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( ; 1 0 ↑ ; 2 7 ) )  →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							com14 | 
							⊢ ( ( 𝑚  ∈  ℕ  ∧  𝑚  ≤  ( ; 1 0 ↑ ; 2 7 ) )  →  ( ∀ 𝑜  ∈   Odd  ( 𝑚  <  𝑜  →  𝑜  ∈   GoldbachOdd  )  →  ( ( ; 1 0 ↑ ; 2 7 )  <  𝑛  →  ( 𝑛  ∈   Odd   →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							impr | 
							⊢ ( ( 𝑚  ∈  ℕ  ∧  ( 𝑚  ≤  ( ; 1 0 ↑ ; 2 7 )  ∧  ∀ 𝑜  ∈   Odd  ( 𝑚  <  𝑜  →  𝑜  ∈   GoldbachOdd  ) ) )  →  ( ( ; 1 0 ↑ ; 2 7 )  <  𝑛  →  ( 𝑛  ∈   Odd   →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							rexlimiva | 
							⊢ ( ∃ 𝑚  ∈  ℕ ( 𝑚  ≤  ( ; 1 0 ↑ ; 2 7 )  ∧  ∀ 𝑜  ∈   Odd  ( 𝑚  <  𝑜  →  𝑜  ∈   GoldbachOdd  ) )  →  ( ( ; 1 0 ↑ ; 2 7 )  <  𝑛  →  ( 𝑛  ∈   Odd   →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) ) )  | 
						
						
							| 108 | 
							
								87 107
							 | 
							ax-mp | 
							⊢ ( ( ; 1 0 ↑ ; 2 7 )  <  𝑛  →  ( 𝑛  ∈   Odd   →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) )  | 
						
						
							| 109 | 
							
								86 108
							 | 
							jaoi | 
							⊢ ( ( 𝑛  ≤  ( ; 1 0 ↑ ; 2 7 )  ∨  ( ; 1 0 ↑ ; 2 7 )  <  𝑛 )  →  ( 𝑛  ∈   Odd   →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) ) )  | 
						
						
							| 110 | 
							
								11 109
							 | 
							mpcom | 
							⊢ ( 𝑛  ∈   Odd   →  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  ) )  | 
						
						
							| 111 | 
							
								110
							 | 
							rgen | 
							⊢ ∀ 𝑛  ∈   Odd  ( 7  <  𝑛  →  𝑛  ∈   GoldbachOdd  )  |