Step |
Hyp |
Ref |
Expression |
1 |
|
tgoldbachgtda.o |
⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } |
2 |
|
tgoldbachgtda.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑂 ) |
3 |
|
tgoldbachgtda.0 |
⊢ ( 𝜑 → ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑁 ) |
4 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } ) |
5 |
|
elrabi |
⊢ ( 𝑁 ∈ { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } → 𝑁 ∈ ℤ ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
7 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
8 |
|
10nn0 |
⊢ ; 1 0 ∈ ℕ0 |
9 |
8
|
nn0rei |
⊢ ; 1 0 ∈ ℝ |
10 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
11 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
12 |
10 11
|
deccl |
⊢ ; 2 7 ∈ ℕ0 |
13 |
|
reexpcl |
⊢ ( ( ; 1 0 ∈ ℝ ∧ ; 2 7 ∈ ℕ0 ) → ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ) |
14 |
9 12 13
|
mp2an |
⊢ ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ) |
16 |
6
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
17 |
|
1re |
⊢ 1 ∈ ℝ |
18 |
|
1lt10 |
⊢ 1 < ; 1 0 |
19 |
17 9 18
|
ltleii |
⊢ 1 ≤ ; 1 0 |
20 |
|
expge1 |
⊢ ( ( ; 1 0 ∈ ℝ ∧ ; 2 7 ∈ ℕ0 ∧ 1 ≤ ; 1 0 ) → 1 ≤ ( ; 1 0 ↑ ; 2 7 ) ) |
21 |
9 12 19 20
|
mp3an |
⊢ 1 ≤ ( ; 1 0 ↑ ; 2 7 ) |
22 |
21
|
a1i |
⊢ ( 𝜑 → 1 ≤ ( ; 1 0 ↑ ; 2 7 ) ) |
23 |
7 15 16 22 3
|
letrd |
⊢ ( 𝜑 → 1 ≤ 𝑁 ) |
24 |
|
elnnz1 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) ) |
25 |
6 23 24
|
sylanbrc |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |