Metamath Proof Explorer


Theorem tgoldbachgnn

Description: Lemma for tgoldbachgtd . (Contributed by Thierry Arnoux, 15-Dec-2021)

Ref Expression
Hypotheses tgoldbachgtda.o 𝑂 = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 }
tgoldbachgtda.n ( 𝜑𝑁𝑂 )
tgoldbachgtda.0 ( 𝜑 → ( 1 0 ↑ 2 7 ) ≤ 𝑁 )
Assertion tgoldbachgnn ( 𝜑𝑁 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 tgoldbachgtda.o 𝑂 = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 }
2 tgoldbachgtda.n ( 𝜑𝑁𝑂 )
3 tgoldbachgtda.0 ( 𝜑 → ( 1 0 ↑ 2 7 ) ≤ 𝑁 )
4 2 1 eleqtrdi ( 𝜑𝑁 ∈ { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } )
5 elrabi ( 𝑁 ∈ { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } → 𝑁 ∈ ℤ )
6 4 5 syl ( 𝜑𝑁 ∈ ℤ )
7 1red ( 𝜑 → 1 ∈ ℝ )
8 10nn0 1 0 ∈ ℕ0
9 8 nn0rei 1 0 ∈ ℝ
10 2nn0 2 ∈ ℕ0
11 7nn0 7 ∈ ℕ0
12 10 11 deccl 2 7 ∈ ℕ0
13 reexpcl ( ( 1 0 ∈ ℝ ∧ 2 7 ∈ ℕ0 ) → ( 1 0 ↑ 2 7 ) ∈ ℝ )
14 9 12 13 mp2an ( 1 0 ↑ 2 7 ) ∈ ℝ
15 14 a1i ( 𝜑 → ( 1 0 ↑ 2 7 ) ∈ ℝ )
16 6 zred ( 𝜑𝑁 ∈ ℝ )
17 1re 1 ∈ ℝ
18 1lt10 1 < 1 0
19 17 9 18 ltleii 1 ≤ 1 0
20 expge1 ( ( 1 0 ∈ ℝ ∧ 2 7 ∈ ℕ0 ∧ 1 ≤ 1 0 ) → 1 ≤ ( 1 0 ↑ 2 7 ) )
21 9 12 19 20 mp3an 1 ≤ ( 1 0 ↑ 2 7 )
22 21 a1i ( 𝜑 → 1 ≤ ( 1 0 ↑ 2 7 ) )
23 7 15 16 22 3 letrd ( 𝜑 → 1 ≤ 𝑁 )
24 elnnz1 ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) )
25 6 23 24 sylanbrc ( 𝜑𝑁 ∈ ℕ )