Step |
Hyp |
Ref |
Expression |
1 |
|
tgoldbachgt.o |
⊢ 𝑂 = { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } |
2 |
|
tgoldbachgt.g |
⊢ 𝐺 = { 𝑧 ∈ 𝑂 ∣ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) } |
3 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
4 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
5 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
6 |
4 5
|
deccl |
⊢ ; 2 7 ∈ ℕ0 |
7 |
|
nnexpcl |
⊢ ( ( ; 1 0 ∈ ℕ ∧ ; 2 7 ∈ ℕ0 ) → ( ; 1 0 ↑ ; 2 7 ) ∈ ℕ ) |
8 |
3 6 7
|
mp2an |
⊢ ( ; 1 0 ↑ ; 2 7 ) ∈ ℕ |
9 |
8
|
nnrei |
⊢ ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ |
10 |
9
|
leidi |
⊢ ( ; 1 0 ↑ ; 2 7 ) ≤ ( ; 1 0 ↑ ; 2 7 ) |
11 |
|
simpl |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → 𝑛 ∈ 𝑂 ) |
12 |
|
inss2 |
⊢ ( 𝑂 ∩ ℙ ) ⊆ ℙ |
13 |
|
prmssnn |
⊢ ℙ ⊆ ℕ |
14 |
12 13
|
sstri |
⊢ ( 𝑂 ∩ ℙ ) ⊆ ℕ |
15 |
14
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑂 ∩ ℙ ) ⊆ ℕ ) |
16 |
1
|
eleq2i |
⊢ ( 𝑛 ∈ 𝑂 ↔ 𝑛 ∈ { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } ) |
17 |
|
elrabi |
⊢ ( 𝑛 ∈ { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } → 𝑛 ∈ ℤ ) |
18 |
16 17
|
sylbi |
⊢ ( 𝑛 ∈ 𝑂 → 𝑛 ∈ ℤ ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 𝑛 ∈ ℤ ) |
20 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
21 |
20
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 3 ∈ ℕ0 ) |
22 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) |
23 |
15 19 21 22
|
reprf |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 𝑐 : ( 0 ..^ 3 ) ⟶ ( 𝑂 ∩ ℙ ) ) |
24 |
|
c0ex |
⊢ 0 ∈ V |
25 |
24
|
tpid1 |
⊢ 0 ∈ { 0 , 1 , 2 } |
26 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
27 |
25 26
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ 3 ) |
28 |
27
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 0 ∈ ( 0 ..^ 3 ) ) |
29 |
23 28
|
ffvelrnd |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 0 ) ∈ ( 𝑂 ∩ ℙ ) ) |
30 |
29
|
elin2d |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 0 ) ∈ ℙ ) |
31 |
|
1ex |
⊢ 1 ∈ V |
32 |
31
|
tpid2 |
⊢ 1 ∈ { 0 , 1 , 2 } |
33 |
32 26
|
eleqtrri |
⊢ 1 ∈ ( 0 ..^ 3 ) |
34 |
33
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 1 ∈ ( 0 ..^ 3 ) ) |
35 |
23 34
|
ffvelrnd |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 1 ) ∈ ( 𝑂 ∩ ℙ ) ) |
36 |
35
|
elin2d |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 1 ) ∈ ℙ ) |
37 |
|
2ex |
⊢ 2 ∈ V |
38 |
37
|
tpid3 |
⊢ 2 ∈ { 0 , 1 , 2 } |
39 |
38 26
|
eleqtrri |
⊢ 2 ∈ ( 0 ..^ 3 ) |
40 |
39
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 2 ∈ ( 0 ..^ 3 ) ) |
41 |
23 40
|
ffvelrnd |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 2 ) ∈ ( 𝑂 ∩ ℙ ) ) |
42 |
41
|
elin2d |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 2 ) ∈ ℙ ) |
43 |
29
|
elin1d |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 0 ) ∈ 𝑂 ) |
44 |
35
|
elin1d |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 1 ) ∈ 𝑂 ) |
45 |
41
|
elin1d |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 2 ) ∈ 𝑂 ) |
46 |
43 44 45
|
3jca |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( ( 𝑐 ‘ 0 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 1 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 2 ) ∈ 𝑂 ) ) |
47 |
26
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 0 ..^ 3 ) = { 0 , 1 , 2 } ) |
48 |
47
|
sumeq1d |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → Σ 𝑖 ∈ ( 0 ..^ 3 ) ( 𝑐 ‘ 𝑖 ) = Σ 𝑖 ∈ { 0 , 1 , 2 } ( 𝑐 ‘ 𝑖 ) ) |
49 |
15 19 21 22
|
reprsum |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → Σ 𝑖 ∈ ( 0 ..^ 3 ) ( 𝑐 ‘ 𝑖 ) = 𝑛 ) |
50 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑐 ‘ 𝑖 ) = ( 𝑐 ‘ 0 ) ) |
51 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝑐 ‘ 𝑖 ) = ( 𝑐 ‘ 1 ) ) |
52 |
|
fveq2 |
⊢ ( 𝑖 = 2 → ( 𝑐 ‘ 𝑖 ) = ( 𝑐 ‘ 2 ) ) |
53 |
14 29
|
sselid |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 0 ) ∈ ℕ ) |
54 |
53
|
nncnd |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 0 ) ∈ ℂ ) |
55 |
14 35
|
sselid |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 1 ) ∈ ℕ ) |
56 |
55
|
nncnd |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 1 ) ∈ ℂ ) |
57 |
14 41
|
sselid |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 2 ) ∈ ℕ ) |
58 |
57
|
nncnd |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 𝑐 ‘ 2 ) ∈ ℂ ) |
59 |
54 56 58
|
3jca |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( ( 𝑐 ‘ 0 ) ∈ ℂ ∧ ( 𝑐 ‘ 1 ) ∈ ℂ ∧ ( 𝑐 ‘ 2 ) ∈ ℂ ) ) |
60 |
24
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 0 ∈ V ) |
61 |
31
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 1 ∈ V ) |
62 |
37
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 2 ∈ V ) |
63 |
60 61 62
|
3jca |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( 0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V ) ) |
64 |
|
0ne1 |
⊢ 0 ≠ 1 |
65 |
64
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 0 ≠ 1 ) |
66 |
|
0ne2 |
⊢ 0 ≠ 2 |
67 |
66
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 0 ≠ 2 ) |
68 |
|
1ne2 |
⊢ 1 ≠ 2 |
69 |
68
|
a1i |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 1 ≠ 2 ) |
70 |
50 51 52 59 63 65 67 69
|
sumtp |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → Σ 𝑖 ∈ { 0 , 1 , 2 } ( 𝑐 ‘ 𝑖 ) = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) ) |
71 |
48 49 70
|
3eqtr3d |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → 𝑛 = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) ) |
72 |
46 71
|
jca |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ( ( ( 𝑐 ‘ 0 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 1 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 2 ) ∈ 𝑂 ) ∧ 𝑛 = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) ) ) |
73 |
|
eleq1 |
⊢ ( 𝑝 = ( 𝑐 ‘ 0 ) → ( 𝑝 ∈ 𝑂 ↔ ( 𝑐 ‘ 0 ) ∈ 𝑂 ) ) |
74 |
73
|
3anbi1d |
⊢ ( 𝑝 = ( 𝑐 ‘ 0 ) → ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ↔ ( ( 𝑐 ‘ 0 ) ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ) ) |
75 |
|
oveq1 |
⊢ ( 𝑝 = ( 𝑐 ‘ 0 ) → ( 𝑝 + 𝑞 ) = ( ( 𝑐 ‘ 0 ) + 𝑞 ) ) |
76 |
75
|
oveq1d |
⊢ ( 𝑝 = ( 𝑐 ‘ 0 ) → ( ( 𝑝 + 𝑞 ) + 𝑟 ) = ( ( ( 𝑐 ‘ 0 ) + 𝑞 ) + 𝑟 ) ) |
77 |
76
|
eqeq2d |
⊢ ( 𝑝 = ( 𝑐 ‘ 0 ) → ( 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 𝑛 = ( ( ( 𝑐 ‘ 0 ) + 𝑞 ) + 𝑟 ) ) ) |
78 |
74 77
|
anbi12d |
⊢ ( 𝑝 = ( 𝑐 ‘ 0 ) → ( ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ↔ ( ( ( 𝑐 ‘ 0 ) ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( ( 𝑐 ‘ 0 ) + 𝑞 ) + 𝑟 ) ) ) ) |
79 |
|
eleq1 |
⊢ ( 𝑞 = ( 𝑐 ‘ 1 ) → ( 𝑞 ∈ 𝑂 ↔ ( 𝑐 ‘ 1 ) ∈ 𝑂 ) ) |
80 |
79
|
3anbi2d |
⊢ ( 𝑞 = ( 𝑐 ‘ 1 ) → ( ( ( 𝑐 ‘ 0 ) ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ↔ ( ( 𝑐 ‘ 0 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 1 ) ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ) ) |
81 |
|
oveq2 |
⊢ ( 𝑞 = ( 𝑐 ‘ 1 ) → ( ( 𝑐 ‘ 0 ) + 𝑞 ) = ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) ) |
82 |
81
|
oveq1d |
⊢ ( 𝑞 = ( 𝑐 ‘ 1 ) → ( ( ( 𝑐 ‘ 0 ) + 𝑞 ) + 𝑟 ) = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + 𝑟 ) ) |
83 |
82
|
eqeq2d |
⊢ ( 𝑞 = ( 𝑐 ‘ 1 ) → ( 𝑛 = ( ( ( 𝑐 ‘ 0 ) + 𝑞 ) + 𝑟 ) ↔ 𝑛 = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + 𝑟 ) ) ) |
84 |
80 83
|
anbi12d |
⊢ ( 𝑞 = ( 𝑐 ‘ 1 ) → ( ( ( ( 𝑐 ‘ 0 ) ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( ( 𝑐 ‘ 0 ) + 𝑞 ) + 𝑟 ) ) ↔ ( ( ( 𝑐 ‘ 0 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 1 ) ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + 𝑟 ) ) ) ) |
85 |
|
eleq1 |
⊢ ( 𝑟 = ( 𝑐 ‘ 2 ) → ( 𝑟 ∈ 𝑂 ↔ ( 𝑐 ‘ 2 ) ∈ 𝑂 ) ) |
86 |
85
|
3anbi3d |
⊢ ( 𝑟 = ( 𝑐 ‘ 2 ) → ( ( ( 𝑐 ‘ 0 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 1 ) ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ↔ ( ( 𝑐 ‘ 0 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 1 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 2 ) ∈ 𝑂 ) ) ) |
87 |
|
oveq2 |
⊢ ( 𝑟 = ( 𝑐 ‘ 2 ) → ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + 𝑟 ) = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) ) |
88 |
87
|
eqeq2d |
⊢ ( 𝑟 = ( 𝑐 ‘ 2 ) → ( 𝑛 = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + 𝑟 ) ↔ 𝑛 = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) ) ) |
89 |
86 88
|
anbi12d |
⊢ ( 𝑟 = ( 𝑐 ‘ 2 ) → ( ( ( ( 𝑐 ‘ 0 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 1 ) ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + 𝑟 ) ) ↔ ( ( ( 𝑐 ‘ 0 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 1 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 2 ) ∈ 𝑂 ) ∧ 𝑛 = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) ) ) ) |
90 |
78 84 89
|
rspc3ev |
⊢ ( ( ( ( 𝑐 ‘ 0 ) ∈ ℙ ∧ ( 𝑐 ‘ 1 ) ∈ ℙ ∧ ( 𝑐 ‘ 2 ) ∈ ℙ ) ∧ ( ( ( 𝑐 ‘ 0 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 1 ) ∈ 𝑂 ∧ ( 𝑐 ‘ 2 ) ∈ 𝑂 ) ∧ 𝑛 = ( ( ( 𝑐 ‘ 0 ) + ( 𝑐 ‘ 1 ) ) + ( 𝑐 ‘ 2 ) ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
91 |
30 36 42 72 90
|
syl31anc |
⊢ ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
92 |
91
|
adantr |
⊢ ( ( ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) ∧ ⊤ ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
93 |
8
|
a1i |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ( ; 1 0 ↑ ; 2 7 ) ∈ ℕ ) |
94 |
93
|
nnred |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ) |
95 |
18
|
zred |
⊢ ( 𝑛 ∈ 𝑂 → 𝑛 ∈ ℝ ) |
96 |
95
|
adantr |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → 𝑛 ∈ ℝ ) |
97 |
|
simpr |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) |
98 |
94 96 97
|
ltled |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑛 ) |
99 |
1 11 98
|
tgoldbachgtd |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → 0 < ( ♯ ‘ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) ) |
100 |
|
ovex |
⊢ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ∈ V |
101 |
|
hashneq0 |
⊢ ( ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ∈ V → ( 0 < ( ♯ ‘ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) ↔ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ≠ ∅ ) ) |
102 |
100 101
|
ax-mp |
⊢ ( 0 < ( ♯ ‘ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) ↔ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ≠ ∅ ) |
103 |
99 102
|
sylib |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ≠ ∅ ) |
104 |
103
|
neneqd |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ¬ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) = ∅ ) |
105 |
|
neq0 |
⊢ ( ¬ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) = ∅ ↔ ∃ 𝑐 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) |
106 |
104 105
|
sylib |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ∃ 𝑐 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) |
107 |
|
tru |
⊢ ⊤ |
108 |
106 107
|
jctil |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ( ⊤ ∧ ∃ 𝑐 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) ) |
109 |
|
19.42v |
⊢ ( ∃ 𝑐 ( ⊤ ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) ↔ ( ⊤ ∧ ∃ 𝑐 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) ) |
110 |
108 109
|
sylibr |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ∃ 𝑐 ( ⊤ ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) ) |
111 |
|
exancom |
⊢ ( ∃ 𝑐 ( ⊤ ∧ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ) ↔ ∃ 𝑐 ( 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ∧ ⊤ ) ) |
112 |
110 111
|
sylib |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ∃ 𝑐 ( 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ∧ ⊤ ) ) |
113 |
|
df-rex |
⊢ ( ∃ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ⊤ ↔ ∃ 𝑐 ( 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ∧ ⊤ ) ) |
114 |
112 113
|
sylibr |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ∃ 𝑐 ∈ ( ( 𝑂 ∩ ℙ ) ( repr ‘ 3 ) 𝑛 ) ⊤ ) |
115 |
92 114
|
r19.29a |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
116 |
2
|
eleq2i |
⊢ ( 𝑛 ∈ 𝐺 ↔ 𝑛 ∈ { 𝑧 ∈ 𝑂 ∣ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) } ) |
117 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑛 → ( 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
118 |
117
|
anbi2d |
⊢ ( 𝑧 = 𝑛 → ( ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ↔ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
119 |
118
|
rexbidv |
⊢ ( 𝑧 = 𝑛 → ( ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ↔ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
120 |
119
|
rexbidv |
⊢ ( 𝑧 = 𝑛 → ( ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ↔ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
121 |
120
|
rexbidv |
⊢ ( 𝑧 = 𝑛 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
122 |
121
|
elrab3 |
⊢ ( 𝑛 ∈ 𝑂 → ( 𝑛 ∈ { 𝑧 ∈ 𝑂 ∣ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑧 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) } ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
123 |
116 122
|
syl5bb |
⊢ ( 𝑛 ∈ 𝑂 → ( 𝑛 ∈ 𝐺 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
124 |
123
|
biimpar |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂 ) ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) → 𝑛 ∈ 𝐺 ) |
125 |
11 115 124
|
syl2anc |
⊢ ( ( 𝑛 ∈ 𝑂 ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → 𝑛 ∈ 𝐺 ) |
126 |
125
|
ex |
⊢ ( 𝑛 ∈ 𝑂 → ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → 𝑛 ∈ 𝐺 ) ) |
127 |
126
|
rgen |
⊢ ∀ 𝑛 ∈ 𝑂 ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → 𝑛 ∈ 𝐺 ) |
128 |
10 127
|
pm3.2i |
⊢ ( ( ; 1 0 ↑ ; 2 7 ) ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ∀ 𝑛 ∈ 𝑂 ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → 𝑛 ∈ 𝐺 ) ) |
129 |
|
breq1 |
⊢ ( 𝑚 = ( ; 1 0 ↑ ; 2 7 ) → ( 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ↔ ( ; 1 0 ↑ ; 2 7 ) ≤ ( ; 1 0 ↑ ; 2 7 ) ) ) |
130 |
|
breq1 |
⊢ ( 𝑚 = ( ; 1 0 ↑ ; 2 7 ) → ( 𝑚 < 𝑛 ↔ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ) |
131 |
130
|
imbi1d |
⊢ ( 𝑚 = ( ; 1 0 ↑ ; 2 7 ) → ( ( 𝑚 < 𝑛 → 𝑛 ∈ 𝐺 ) ↔ ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → 𝑛 ∈ 𝐺 ) ) ) |
132 |
131
|
ralbidv |
⊢ ( 𝑚 = ( ; 1 0 ↑ ; 2 7 ) → ( ∀ 𝑛 ∈ 𝑂 ( 𝑚 < 𝑛 → 𝑛 ∈ 𝐺 ) ↔ ∀ 𝑛 ∈ 𝑂 ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → 𝑛 ∈ 𝐺 ) ) ) |
133 |
129 132
|
anbi12d |
⊢ ( 𝑚 = ( ; 1 0 ↑ ; 2 7 ) → ( ( 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ∀ 𝑛 ∈ 𝑂 ( 𝑚 < 𝑛 → 𝑛 ∈ 𝐺 ) ) ↔ ( ( ; 1 0 ↑ ; 2 7 ) ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ∀ 𝑛 ∈ 𝑂 ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → 𝑛 ∈ 𝐺 ) ) ) ) |
134 |
133
|
rspcev |
⊢ ( ( ( ; 1 0 ↑ ; 2 7 ) ∈ ℕ ∧ ( ( ; 1 0 ↑ ; 2 7 ) ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ∀ 𝑛 ∈ 𝑂 ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → 𝑛 ∈ 𝐺 ) ) ) → ∃ 𝑚 ∈ ℕ ( 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ∀ 𝑛 ∈ 𝑂 ( 𝑚 < 𝑛 → 𝑛 ∈ 𝐺 ) ) ) |
135 |
8 128 134
|
mp2an |
⊢ ∃ 𝑚 ∈ ℕ ( 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ∀ 𝑛 ∈ 𝑂 ( 𝑚 < 𝑛 → 𝑛 ∈ 𝐺 ) ) |