| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tgpconncomp.x | 
							⊢ 𝑋  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							tgpconncomp.z | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							tgpconncomp.j | 
							⊢ 𝐽  =  ( TopOpen ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							tgpconncomp.s | 
							⊢ 𝑆  =  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  (  0   ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  | 
						
						
							| 5 | 
							
								
							 | 
							ssrab2 | 
							⊢ { 𝑥  ∈  𝒫  𝑋  ∣  (  0   ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  ⊆  𝒫  𝑋  | 
						
						
							| 6 | 
							
								
							 | 
							sspwuni | 
							⊢ ( { 𝑥  ∈  𝒫  𝑋  ∣  (  0   ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  ⊆  𝒫  𝑋  ↔  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  (  0   ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  ⊆  𝑋 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							mpbi | 
							⊢ ∪  { 𝑥  ∈  𝒫  𝑋  ∣  (  0   ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  ⊆  𝑋  | 
						
						
							| 8 | 
							
								4 7
							 | 
							eqsstri | 
							⊢ 𝑆  ⊆  𝑋  | 
						
						
							| 9 | 
							
								8
							 | 
							a1i | 
							⊢ ( 𝐺  ∈  TopGrp  →  𝑆  ⊆  𝑋 )  | 
						
						
							| 10 | 
							
								3 1
							 | 
							tgptopon | 
							⊢ ( 𝐺  ∈  TopGrp  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							tgpgrp | 
							⊢ ( 𝐺  ∈  TopGrp  →  𝐺  ∈  Grp )  | 
						
						
							| 12 | 
							
								1 2
							 | 
							grpidcl | 
							⊢ ( 𝐺  ∈  Grp  →   0   ∈  𝑋 )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							⊢ ( 𝐺  ∈  TopGrp  →   0   ∈  𝑋 )  | 
						
						
							| 14 | 
							
								4
							 | 
							conncompid | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧   0   ∈  𝑋 )  →   0   ∈  𝑆 )  | 
						
						
							| 15 | 
							
								10 13 14
							 | 
							syl2anc | 
							⊢ ( 𝐺  ∈  TopGrp  →   0   ∈  𝑆 )  | 
						
						
							| 16 | 
							
								15
							 | 
							ne0d | 
							⊢ ( 𝐺  ∈  TopGrp  →  𝑆  ≠  ∅ )  | 
						
						
							| 17 | 
							
								
							 | 
							df-ima | 
							⊢ ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 )  =  ran  ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  ↾  𝑆 )  | 
						
						
							| 18 | 
							
								
							 | 
							resmpt | 
							⊢ ( 𝑆  ⊆  𝑋  →  ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  ↾  𝑆 )  =  ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 19 | 
							
								8 18
							 | 
							ax-mp | 
							⊢ ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  ↾  𝑆 )  =  ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							rneqi | 
							⊢ ran  ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  ↾  𝑆 )  =  ran  ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							eqtri | 
							⊢ ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 )  =  ran  ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							imassrn | 
							⊢ ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 )  ⊆  ran  ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  | 
						
						
							| 23 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  𝐺  ∈  Grp )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  ∧  𝑧  ∈  𝑋 )  →  𝐺  ∈  Grp )  | 
						
						
							| 25 | 
							
								9
							 | 
							sselda | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  𝑋 )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  ∧  𝑧  ∈  𝑋 )  →  𝑦  ∈  𝑋 )  | 
						
						
							| 27 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  ∧  𝑧  ∈  𝑋 )  →  𝑧  ∈  𝑋 )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐺 )  | 
						
						
							| 29 | 
							
								1 28
							 | 
							grpsubcl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  →  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 )  ∈  𝑋 )  | 
						
						
							| 30 | 
							
								24 26 27 29
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  ∧  𝑧  ∈  𝑋 )  →  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 )  ∈  𝑋 )  | 
						
						
							| 31 | 
							
								30
							 | 
							fmpttd | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 ⟶ 𝑋 )  | 
						
						
							| 32 | 
							
								31
							 | 
							frnd | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ran  ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  ⊆  𝑋 )  | 
						
						
							| 33 | 
							
								22 32
							 | 
							sstrid | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 )  ⊆  𝑋 )  | 
						
						
							| 34 | 
							
								1 2 28
							 | 
							grpsubid | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝑋 )  →  ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 )  =   0  )  | 
						
						
							| 35 | 
							
								23 25 34
							 | 
							syl2anc | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 )  =   0  )  | 
						
						
							| 36 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  𝑆 )  | 
						
						
							| 37 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 )  ∈  V  | 
						
						
							| 38 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  =  ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑧  =  𝑦  →  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 )  =  ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							elrnmpt1s | 
							⊢ ( ( 𝑦  ∈  𝑆  ∧  ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 )  ∈  V )  →  ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 )  ∈  ran  ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 41 | 
							
								36 37 40
							 | 
							sylancl | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 )  ∈  ran  ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 42 | 
							
								35 41
							 | 
							eqeltrrd | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →   0   ∈  ran  ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 43 | 
							
								42 21
							 | 
							eleqtrrdi | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →   0   ∈  ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							eqid | 
							⊢ ∪  𝐽  =  ∪  𝐽  | 
						
						
							| 45 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 )  | 
						
						
							| 46 | 
							
								
							 | 
							eqid | 
							⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 )  | 
						
						
							| 47 | 
							
								1 45 46 28
							 | 
							grpsubval | 
							⊢ ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  →  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 )  =  ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  | 
						
						
							| 48 | 
							
								25 47
							 | 
							sylan | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  ∧  𝑧  ∈  𝑋 )  →  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 )  =  ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							mpteq2dva | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  =  ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) )  | 
						
						
							| 50 | 
							
								1 46
							 | 
							grpinvcl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑋 )  | 
						
						
							| 51 | 
							
								23 50
							 | 
							sylan | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  ∧  𝑧  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  ∈  𝑋 )  | 
						
						
							| 52 | 
							
								1 46
							 | 
							grpinvf | 
							⊢ ( 𝐺  ∈  Grp  →  ( invg ‘ 𝐺 ) : 𝑋 ⟶ 𝑋 )  | 
						
						
							| 53 | 
							
								11 52
							 | 
							syl | 
							⊢ ( 𝐺  ∈  TopGrp  →  ( invg ‘ 𝐺 ) : 𝑋 ⟶ 𝑋 )  | 
						
						
							| 54 | 
							
								53
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( invg ‘ 𝐺 ) : 𝑋 ⟶ 𝑋 )  | 
						
						
							| 55 | 
							
								54
							 | 
							feqmptd | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( invg ‘ 𝐺 )  =  ( 𝑧  ∈  𝑋  ↦  ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  | 
						
						
							| 56 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( 𝑤  ∈  𝑋  ↦  ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) )  =  ( 𝑤  ∈  𝑋  ↦  ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) )  | 
						
						
							| 57 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑤  =  ( ( invg ‘ 𝐺 ) ‘ 𝑧 )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 )  =  ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) )  | 
						
						
							| 58 | 
							
								51 55 56 57
							 | 
							fmptco | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑤  ∈  𝑋  ↦  ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) )  ∘  ( invg ‘ 𝐺 ) )  =  ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) )  | 
						
						
							| 59 | 
							
								49 58
							 | 
							eqtr4d | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  =  ( ( 𝑤  ∈  𝑋  ↦  ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) )  ∘  ( invg ‘ 𝐺 ) ) )  | 
						
						
							| 60 | 
							
								3 46
							 | 
							grpinvhmeo | 
							⊢ ( 𝐺  ∈  TopGrp  →  ( invg ‘ 𝐺 )  ∈  ( 𝐽 Homeo 𝐽 ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( invg ‘ 𝐺 )  ∈  ( 𝐽 Homeo 𝐽 ) )  | 
						
						
							| 62 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑤  ∈  𝑋  ↦  ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) )  =  ( 𝑤  ∈  𝑋  ↦  ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) )  | 
						
						
							| 63 | 
							
								62 1 45 3
							 | 
							tgplacthmeo | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑋 )  →  ( 𝑤  ∈  𝑋  ↦  ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) )  ∈  ( 𝐽 Homeo 𝐽 ) )  | 
						
						
							| 64 | 
							
								25 63
							 | 
							syldan | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( 𝑤  ∈  𝑋  ↦  ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) )  ∈  ( 𝐽 Homeo 𝐽 ) )  | 
						
						
							| 65 | 
							
								
							 | 
							hmeoco | 
							⊢ ( ( ( invg ‘ 𝐺 )  ∈  ( 𝐽 Homeo 𝐽 )  ∧  ( 𝑤  ∈  𝑋  ↦  ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) )  ∈  ( 𝐽 Homeo 𝐽 ) )  →  ( ( 𝑤  ∈  𝑋  ↦  ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) )  ∘  ( invg ‘ 𝐺 ) )  ∈  ( 𝐽 Homeo 𝐽 ) )  | 
						
						
							| 66 | 
							
								61 64 65
							 | 
							syl2anc | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑤  ∈  𝑋  ↦  ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) )  ∘  ( invg ‘ 𝐺 ) )  ∈  ( 𝐽 Homeo 𝐽 ) )  | 
						
						
							| 67 | 
							
								59 66
							 | 
							eqeltrd | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  ∈  ( 𝐽 Homeo 𝐽 ) )  | 
						
						
							| 68 | 
							
								
							 | 
							hmeocn | 
							⊢ ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  ∈  ( 𝐽 Homeo 𝐽 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  ∈  ( 𝐽  Cn  𝐽 ) )  | 
						
						
							| 69 | 
							
								67 68
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  ∈  ( 𝐽  Cn  𝐽 ) )  | 
						
						
							| 70 | 
							
								
							 | 
							toponuni | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 )  | 
						
						
							| 71 | 
							
								10 70
							 | 
							syl | 
							⊢ ( 𝐺  ∈  TopGrp  →  𝑋  =  ∪  𝐽 )  | 
						
						
							| 72 | 
							
								71
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  𝑋  =  ∪  𝐽 )  | 
						
						
							| 73 | 
							
								8 72
							 | 
							sseqtrid | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  𝑆  ⊆  ∪  𝐽 )  | 
						
						
							| 74 | 
							
								4
							 | 
							conncompconn | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧   0   ∈  𝑋 )  →  ( 𝐽  ↾t  𝑆 )  ∈  Conn )  | 
						
						
							| 75 | 
							
								10 13 74
							 | 
							syl2anc | 
							⊢ ( 𝐺  ∈  TopGrp  →  ( 𝐽  ↾t  𝑆 )  ∈  Conn )  | 
						
						
							| 76 | 
							
								75
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( 𝐽  ↾t  𝑆 )  ∈  Conn )  | 
						
						
							| 77 | 
							
								44 69 73 76
							 | 
							connima | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( 𝐽  ↾t  ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 ) )  ∈  Conn )  | 
						
						
							| 78 | 
							
								4
							 | 
							conncompss | 
							⊢ ( ( ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 )  ⊆  𝑋  ∧   0   ∈  ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 )  ∧  ( 𝐽  ↾t  ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 ) )  ∈  Conn )  →  ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 )  ⊆  𝑆 )  | 
						
						
							| 79 | 
							
								33 43 77 78
							 | 
							syl3anc | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝑧  ∈  𝑋  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 )  ⊆  𝑆 )  | 
						
						
							| 80 | 
							
								21 79
							 | 
							eqsstrrid | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ran  ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  ⊆  𝑆 )  | 
						
						
							| 81 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 )  ∈  V  | 
						
						
							| 82 | 
							
								81 38
							 | 
							fnmpti | 
							⊢ ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  Fn  𝑆  | 
						
						
							| 83 | 
							
								
							 | 
							df-f | 
							⊢ ( ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑆 ⟶ 𝑆  ↔  ( ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  Fn  𝑆  ∧  ran  ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  ⊆  𝑆 ) )  | 
						
						
							| 84 | 
							
								82 83
							 | 
							mpbiran | 
							⊢ ( ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑆 ⟶ 𝑆  ↔  ran  ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) )  ⊆  𝑆 )  | 
						
						
							| 85 | 
							
								80 84
							 | 
							sylibr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑆 ⟶ 𝑆 )  | 
						
						
							| 86 | 
							
								38
							 | 
							fmpt | 
							⊢ ( ∀ 𝑧  ∈  𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 )  ∈  𝑆  ↔  ( 𝑧  ∈  𝑆  ↦  ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑆 ⟶ 𝑆 )  | 
						
						
							| 87 | 
							
								85 86
							 | 
							sylibr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑦  ∈  𝑆 )  →  ∀ 𝑧  ∈  𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 )  | 
						
						
							| 88 | 
							
								87
							 | 
							ralrimiva | 
							⊢ ( 𝐺  ∈  TopGrp  →  ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 )  | 
						
						
							| 89 | 
							
								1 28
							 | 
							issubg4 | 
							⊢ ( 𝐺  ∈  Grp  →  ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝑆  ⊆  𝑋  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) ) )  | 
						
						
							| 90 | 
							
								11 89
							 | 
							syl | 
							⊢ ( 𝐺  ∈  TopGrp  →  ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝑆  ⊆  𝑋  ∧  𝑆  ≠  ∅  ∧  ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) ) )  | 
						
						
							| 91 | 
							
								9 16 88 90
							 | 
							mpbir3and | 
							⊢ ( 𝐺  ∈  TopGrp  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 92 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  𝐺  ∈  Grp )  | 
						
						
							| 93 | 
							
								
							 | 
							eqid | 
							⊢ ( oppg ‘ 𝐺 )  =  ( oppg ‘ 𝐺 )  | 
						
						
							| 94 | 
							
								93 46
							 | 
							oppginv | 
							⊢ ( 𝐺  ∈  Grp  →  ( invg ‘ 𝐺 )  =  ( invg ‘ ( oppg ‘ 𝐺 ) ) )  | 
						
						
							| 95 | 
							
								92 94
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( invg ‘ 𝐺 )  =  ( invg ‘ ( oppg ‘ 𝐺 ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							fveq1d | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) )  =  ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) )  | 
						
						
							| 97 | 
							
								
							 | 
							simprll | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  𝑦  ∈  𝑋 )  | 
						
						
							| 98 | 
							
								1 46
							 | 
							grpinvinv | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) )  =  𝑦 )  | 
						
						
							| 99 | 
							
								92 97 98
							 | 
							syl2anc | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) )  =  𝑦 )  | 
						
						
							| 100 | 
							
								96 99
							 | 
							eqtr3d | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) )  =  𝑦 )  | 
						
						
							| 101 | 
							
								100
							 | 
							oveq1d | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 )  =  ( 𝑦 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) )  | 
						
						
							| 102 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ ( oppg ‘ 𝐺 ) )  =  ( +g ‘ ( oppg ‘ 𝐺 ) )  | 
						
						
							| 103 | 
							
								45 93 102
							 | 
							oppgplus | 
							⊢ ( 𝑦 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 )  =  ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 )  | 
						
						
							| 104 | 
							
								101 103
							 | 
							eqtrdi | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 )  =  ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) )  | 
						
						
							| 105 | 
							
								1 46
							 | 
							grpinvcl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋 )  | 
						
						
							| 106 | 
							
								92 97 105
							 | 
							syl2anc | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋 )  | 
						
						
							| 107 | 
							
								
							 | 
							simprlr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  𝑧  ∈  𝑋 )  | 
						
						
							| 108 | 
							
								99
							 | 
							oveq1d | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) )  | 
						
						
							| 109 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 )  | 
						
						
							| 110 | 
							
								108 109
							 | 
							eqeltrd | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 )  | 
						
						
							| 111 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐺  ~QG  𝑆 )  =  ( 𝐺  ~QG  𝑆 )  | 
						
						
							| 112 | 
							
								1 46 45 111
							 | 
							eqgval | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑆  ⊆  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺  ~QG  𝑆 ) 𝑧  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) ) )  | 
						
						
							| 113 | 
							
								92 8 112
							 | 
							sylancl | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺  ~QG  𝑆 ) 𝑧  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) ) )  | 
						
						
							| 114 | 
							
								106 107 110 113
							 | 
							mpbir3and | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺  ~QG  𝑆 ) 𝑧 )  | 
						
						
							| 115 | 
							
								1 2 3 4 111
							 | 
							tgpconncompeqg | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋 )  →  [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺  ~QG  𝑆 )  =  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) } )  | 
						
						
							| 116 | 
							
								106 115
							 | 
							syldan | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺  ~QG  𝑆 )  =  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) } )  | 
						
						
							| 117 | 
							
								93
							 | 
							oppgtgp | 
							⊢ ( 𝐺  ∈  TopGrp  →  ( oppg ‘ 𝐺 )  ∈  TopGrp )  | 
						
						
							| 118 | 
							
								117
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( oppg ‘ 𝐺 )  ∈  TopGrp )  | 
						
						
							| 119 | 
							
								93 1
							 | 
							oppgbas | 
							⊢ 𝑋  =  ( Base ‘ ( oppg ‘ 𝐺 ) )  | 
						
						
							| 120 | 
							
								93 2
							 | 
							oppgid | 
							⊢  0   =  ( 0g ‘ ( oppg ‘ 𝐺 ) )  | 
						
						
							| 121 | 
							
								93 3
							 | 
							oppgtopn | 
							⊢ 𝐽  =  ( TopOpen ‘ ( oppg ‘ 𝐺 ) )  | 
						
						
							| 122 | 
							
								
							 | 
							eqid | 
							⊢ ( ( oppg ‘ 𝐺 )  ~QG  𝑆 )  =  ( ( oppg ‘ 𝐺 )  ~QG  𝑆 )  | 
						
						
							| 123 | 
							
								119 120 121 4 122
							 | 
							tgpconncompeqg | 
							⊢ ( ( ( oppg ‘ 𝐺 )  ∈  TopGrp  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋 )  →  [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 )  ~QG  𝑆 )  =  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) } )  | 
						
						
							| 124 | 
							
								118 106 123
							 | 
							syl2anc | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 )  ~QG  𝑆 )  =  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) } )  | 
						
						
							| 125 | 
							
								116 124
							 | 
							eqtr4d | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺  ~QG  𝑆 )  =  [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 )  ~QG  𝑆 ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							eleq2d | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( 𝑧  ∈  [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺  ~QG  𝑆 )  ↔  𝑧  ∈  [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 )  ~QG  𝑆 ) ) )  | 
						
						
							| 127 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 128 | 
							
								
							 | 
							fvex | 
							⊢ ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  V  | 
						
						
							| 129 | 
							
								127 128
							 | 
							elec | 
							⊢ ( 𝑧  ∈  [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺  ~QG  𝑆 )  ↔  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺  ~QG  𝑆 ) 𝑧 )  | 
						
						
							| 130 | 
							
								127 128
							 | 
							elec | 
							⊢ ( 𝑧  ∈  [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 )  ~QG  𝑆 )  ↔  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 )  ~QG  𝑆 ) 𝑧 )  | 
						
						
							| 131 | 
							
								126 129 130
							 | 
							3bitr3g | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺  ~QG  𝑆 ) 𝑧  ↔  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 )  ~QG  𝑆 ) 𝑧 ) )  | 
						
						
							| 132 | 
							
								114 131
							 | 
							mpbid | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 )  ~QG  𝑆 ) 𝑧 )  | 
						
						
							| 133 | 
							
								
							 | 
							eqid | 
							⊢ ( invg ‘ ( oppg ‘ 𝐺 ) )  =  ( invg ‘ ( oppg ‘ 𝐺 ) )  | 
						
						
							| 134 | 
							
								119 133 102 122
							 | 
							eqgval | 
							⊢ ( ( ( oppg ‘ 𝐺 )  ∈  TopGrp  ∧  𝑆  ⊆  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 )  ~QG  𝑆 ) 𝑧  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 )  ∈  𝑆 ) ) )  | 
						
						
							| 135 | 
							
								118 8 134
							 | 
							sylancl | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 )  ~QG  𝑆 ) 𝑧  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 )  ∈  𝑆 ) ) )  | 
						
						
							| 136 | 
							
								132 135
							 | 
							mpbid | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 )  ∈  𝑆 ) )  | 
						
						
							| 137 | 
							
								136
							 | 
							simp3d | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 )  ∈  𝑆 )  | 
						
						
							| 138 | 
							
								104 137
							 | 
							eqeltrrd | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) )  →  ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑆 )  | 
						
						
							| 139 | 
							
								138
							 | 
							expr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆  →  ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑆 ) )  | 
						
						
							| 140 | 
							
								139
							 | 
							ralrimivva | 
							⊢ ( 𝐺  ∈  TopGrp  →  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆  →  ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑆 ) )  | 
						
						
							| 141 | 
							
								1 45
							 | 
							isnsg2 | 
							⊢ ( 𝑆  ∈  ( NrmSGrp ‘ 𝐺 )  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆  →  ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑆 ) ) )  | 
						
						
							| 142 | 
							
								91 140 141
							 | 
							sylanbrc | 
							⊢ ( 𝐺  ∈  TopGrp  →  𝑆  ∈  ( NrmSGrp ‘ 𝐺 ) )  |