| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tgpconncomp.x | 
							⊢ 𝑋  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							tgpconncomp.z | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							tgpconncomp.j | 
							⊢ 𝐽  =  ( TopOpen ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							tgpconncomp.s | 
							⊢ 𝑆  =  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  (  0   ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  | 
						
						
							| 5 | 
							
								
							 | 
							tgpconncompeqg.r | 
							⊢  ∼   =  ( 𝐺  ~QG  𝑆 )  | 
						
						
							| 6 | 
							
								
							 | 
							dfec2 | 
							⊢ ( 𝐴  ∈  𝑋  →  [ 𝐴 ]  ∼   =  { 𝑧  ∣  𝐴  ∼  𝑧 } )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  [ 𝐴 ]  ∼   =  { 𝑧  ∣  𝐴  ∼  𝑧 } )  | 
						
						
							| 8 | 
							
								
							 | 
							ssrab2 | 
							⊢ { 𝑥  ∈  𝒫  𝑋  ∣  (  0   ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  ⊆  𝒫  𝑋  | 
						
						
							| 9 | 
							
								
							 | 
							sspwuni | 
							⊢ ( { 𝑥  ∈  𝒫  𝑋  ∣  (  0   ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  ⊆  𝒫  𝑋  ↔  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  (  0   ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  ⊆  𝑋 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mpbi | 
							⊢ ∪  { 𝑥  ∈  𝒫  𝑋  ∣  (  0   ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  ⊆  𝑋  | 
						
						
							| 11 | 
							
								4 10
							 | 
							eqsstri | 
							⊢ 𝑆  ⊆  𝑋  | 
						
						
							| 12 | 
							
								11
							 | 
							a1i | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  𝑆  ⊆  𝑋 )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 )  | 
						
						
							| 15 | 
							
								1 13 14 5
							 | 
							eqgval | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑆  ⊆  𝑋 )  →  ( 𝐴  ∼  𝑧  ↔  ( 𝐴  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							syldan | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∼  𝑧  ↔  ( 𝐴  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐴  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑆 )  →  𝑧  ∈  𝑋 )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							biimtrdi | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∼  𝑧  →  𝑧  ∈  𝑋 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							abssdv | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  { 𝑧  ∣  𝐴  ∼  𝑧 }  ⊆  𝑋 )  | 
						
						
							| 20 | 
							
								7 19
							 | 
							eqsstrd | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  [ 𝐴 ]  ∼   ⊆  𝑋 )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  𝑋 )  | 
						
						
							| 22 | 
							
								
							 | 
							tgpgrp | 
							⊢ ( 𝐺  ∈  TopGrp  →  𝐺  ∈  Grp )  | 
						
						
							| 23 | 
							
								1 14 2 13
							 | 
							grplinv | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 )  =   0  )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							sylan | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 )  =   0  )  | 
						
						
							| 25 | 
							
								3 1
							 | 
							tgptopon | 
							⊢ ( 𝐺  ∈  TopGrp  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  | 
						
						
							| 27 | 
							
								22
							 | 
							adantr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  𝐺  ∈  Grp )  | 
						
						
							| 28 | 
							
								1 2
							 | 
							grpidcl | 
							⊢ ( 𝐺  ∈  Grp  →   0   ∈  𝑋 )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →   0   ∈  𝑋 )  | 
						
						
							| 30 | 
							
								4
							 | 
							conncompid | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧   0   ∈  𝑋 )  →   0   ∈  𝑆 )  | 
						
						
							| 31 | 
							
								26 29 30
							 | 
							syl2anc | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →   0   ∈  𝑆 )  | 
						
						
							| 32 | 
							
								24 31
							 | 
							eqeltrd | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 )  ∈  𝑆 )  | 
						
						
							| 33 | 
							
								1 13 14 5
							 | 
							eqgval | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝑆  ⊆  𝑋 )  →  ( 𝐴  ∼  𝐴  ↔  ( 𝐴  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 )  ∈  𝑆 ) ) )  | 
						
						
							| 34 | 
							
								12 33
							 | 
							syldan | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∼  𝐴  ↔  ( 𝐴  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 )  ∈  𝑆 ) ) )  | 
						
						
							| 35 | 
							
								21 21 32 34
							 | 
							mpbir3and | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∼  𝐴 )  | 
						
						
							| 36 | 
							
								
							 | 
							elecg | 
							⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∈  [ 𝐴 ]  ∼   ↔  𝐴  ∼  𝐴 ) )  | 
						
						
							| 37 | 
							
								21 21 36
							 | 
							syl2anc | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴  ∈  [ 𝐴 ]  ∼   ↔  𝐴  ∼  𝐴 ) )  | 
						
						
							| 38 | 
							
								35 37
							 | 
							mpbird | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  [ 𝐴 ]  ∼  )  | 
						
						
							| 39 | 
							
								1 5 14
							 | 
							eqglact | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑆  ⊆  𝑋  ∧  𝐴  ∈  𝑋 )  →  [ 𝐴 ]  ∼   =  ( ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 ) )  | 
						
						
							| 40 | 
							
								11 39
							 | 
							mp3an2 | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  [ 𝐴 ]  ∼   =  ( ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 ) )  | 
						
						
							| 41 | 
							
								22 40
							 | 
							sylan | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  [ 𝐴 ]  ∼   =  ( ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							oveq2d | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐽  ↾t  [ 𝐴 ]  ∼  )  =  ( 𝐽  ↾t  ( ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							eqid | 
							⊢ ∪  𝐽  =  ∪  𝐽  | 
						
						
							| 44 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  =  ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  | 
						
						
							| 45 | 
							
								44 1 14 3
							 | 
							tgplacthmeo | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  ∈  ( 𝐽 Homeo 𝐽 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							hmeocn | 
							⊢ ( ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  ∈  ( 𝐽 Homeo 𝐽 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  ∈  ( 𝐽  Cn  𝐽 ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  ∈  ( 𝐽  Cn  𝐽 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							toponuni | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 )  | 
						
						
							| 49 | 
							
								26 48
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  𝑋  =  ∪  𝐽 )  | 
						
						
							| 50 | 
							
								11 49
							 | 
							sseqtrid | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  𝑆  ⊆  ∪  𝐽 )  | 
						
						
							| 51 | 
							
								4
							 | 
							conncompconn | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧   0   ∈  𝑋 )  →  ( 𝐽  ↾t  𝑆 )  ∈  Conn )  | 
						
						
							| 52 | 
							
								26 29 51
							 | 
							syl2anc | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐽  ↾t  𝑆 )  ∈  Conn )  | 
						
						
							| 53 | 
							
								43 47 50 52
							 | 
							connima | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐽  ↾t  ( ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 ) )  ∈  Conn )  | 
						
						
							| 54 | 
							
								42 53
							 | 
							eqeltrd | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐽  ↾t  [ 𝐴 ]  ∼  )  ∈  Conn )  | 
						
						
							| 55 | 
							
								
							 | 
							eqid | 
							⊢ ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  =  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  | 
						
						
							| 56 | 
							
								55
							 | 
							conncompss | 
							⊢ ( ( [ 𝐴 ]  ∼   ⊆  𝑋  ∧  𝐴  ∈  [ 𝐴 ]  ∼   ∧  ( 𝐽  ↾t  [ 𝐴 ]  ∼  )  ∈  Conn )  →  [ 𝐴 ]  ∼   ⊆  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) } )  | 
						
						
							| 57 | 
							
								20 38 54 56
							 | 
							syl3anc | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  [ 𝐴 ]  ∼   ⊆  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) } )  | 
						
						
							| 58 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑦  ∈  𝒫  𝑋  →  𝑦  ⊆  𝑋 )  | 
						
						
							| 59 | 
							
								44
							 | 
							mptpreima | 
							⊢ ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑦 )  =  { 𝑧  ∈  𝑋  ∣  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑦 }  | 
						
						
							| 60 | 
							
								59
							 | 
							ssrab3 | 
							⊢ ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑦 )  ⊆  𝑋  | 
						
						
							| 61 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →   0   ∈  𝑋 )  | 
						
						
							| 62 | 
							
								1 14 2
							 | 
							grprid | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 ( +g ‘ 𝐺 )  0  )  =  𝐴 )  | 
						
						
							| 63 | 
							
								22 62
							 | 
							sylan | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 ( +g ‘ 𝐺 )  0  )  =  𝐴 )  | 
						
						
							| 64 | 
							
								63
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  ( 𝐴 ( +g ‘ 𝐺 )  0  )  =  𝐴 )  | 
						
						
							| 65 | 
							
								
							 | 
							simprrl | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  𝐴  ∈  𝑦 )  | 
						
						
							| 66 | 
							
								64 65
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  ( 𝐴 ( +g ‘ 𝐺 )  0  )  ∈  𝑦 )  | 
						
						
							| 67 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑧  =   0   →  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 )  =  ( 𝐴 ( +g ‘ 𝐺 )  0  ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							eleq1d | 
							⊢ ( 𝑧  =   0   →  ( ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑦  ↔  ( 𝐴 ( +g ‘ 𝐺 )  0  )  ∈  𝑦 ) )  | 
						
						
							| 69 | 
							
								68 59
							 | 
							elrab2 | 
							⊢ (  0   ∈  ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑦 )  ↔  (  0   ∈  𝑋  ∧  ( 𝐴 ( +g ‘ 𝐺 )  0  )  ∈  𝑦 ) )  | 
						
						
							| 70 | 
							
								61 66 69
							 | 
							sylanbrc | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →   0   ∈  ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑦 ) )  | 
						
						
							| 71 | 
							
								
							 | 
							hmeocnvcn | 
							⊢ ( ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  ∈  ( 𝐽 Homeo 𝐽 )  →  ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  ∈  ( 𝐽  Cn  𝐽 ) )  | 
						
						
							| 72 | 
							
								45 71
							 | 
							syl | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  ∈  ( 𝐽  Cn  𝐽 ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  ∈  ( 𝐽  Cn  𝐽 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  𝑦  ⊆  𝑋 )  | 
						
						
							| 75 | 
							
								49
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  𝑋  =  ∪  𝐽 )  | 
						
						
							| 76 | 
							
								74 75
							 | 
							sseqtrd | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  𝑦  ⊆  ∪  𝐽 )  | 
						
						
							| 77 | 
							
								
							 | 
							simprrr | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  ( 𝐽  ↾t  𝑦 )  ∈  Conn )  | 
						
						
							| 78 | 
							
								43 73 76 77
							 | 
							connima | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  ( 𝐽  ↾t  ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑦 ) )  ∈  Conn )  | 
						
						
							| 79 | 
							
								4
							 | 
							conncompss | 
							⊢ ( ( ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑦 )  ⊆  𝑋  ∧   0   ∈  ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑦 )  ∧  ( 𝐽  ↾t  ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑦 ) )  ∈  Conn )  →  ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑦 )  ⊆  𝑆 )  | 
						
						
							| 80 | 
							
								60 70 78 79
							 | 
							mp3an2i | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑦 )  ⊆  𝑆 )  | 
						
						
							| 81 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑔  ∈  𝑋  ↦  ( 𝑧  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) )  =  ( 𝑔  ∈  𝑋  ↦  ( 𝑧  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 82 | 
							
								81 1 14 13
							 | 
							grplactcnv | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑔  ∈  𝑋  ↦  ( 𝑧  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋  ∧  ◡ ( ( 𝑔  ∈  𝑋  ↦  ( 𝑧  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 )  =  ( ( 𝑔  ∈  𝑋  ↦  ( 𝑧  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) )  | 
						
						
							| 83 | 
							
								22 82
							 | 
							sylan | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑔  ∈  𝑋  ↦  ( 𝑧  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋  ∧  ◡ ( ( 𝑔  ∈  𝑋  ↦  ( 𝑧  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 )  =  ( ( 𝑔  ∈  𝑋  ↦  ( 𝑧  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							simpld | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑔  ∈  𝑋  ↦  ( 𝑧  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 )  | 
						
						
							| 85 | 
							
								81 1
							 | 
							grplactfval | 
							⊢ ( 𝐴  ∈  𝑋  →  ( ( 𝑔  ∈  𝑋  ↦  ( 𝑧  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 )  =  ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							adantl | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑔  ∈  𝑋  ↦  ( 𝑧  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 )  =  ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							f1oeq1d | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑔  ∈  𝑋  ↦  ( 𝑧  ∈  𝑋  ↦  ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋  ↔  ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) )  | 
						
						
							| 88 | 
							
								84 87
							 | 
							mpbid | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 )  | 
						
						
							| 89 | 
							
								88
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 )  | 
						
						
							| 90 | 
							
								
							 | 
							f1ocnv | 
							⊢ ( ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋  →  ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 )  | 
						
						
							| 91 | 
							
								
							 | 
							f1ofun | 
							⊢ ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋  →  Fun  ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 92 | 
							
								89 90 91
							 | 
							3syl | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  Fun  ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 93 | 
							
								
							 | 
							f1odm | 
							⊢ ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋  →  dom  ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  =  𝑋 )  | 
						
						
							| 94 | 
							
								89 90 93
							 | 
							3syl | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  dom  ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  =  𝑋 )  | 
						
						
							| 95 | 
							
								74 94
							 | 
							sseqtrrd | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  𝑦  ⊆  dom  ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) )  | 
						
						
							| 96 | 
							
								
							 | 
							funimass3 | 
							⊢ ( ( Fun  ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  ∧  𝑦  ⊆  dom  ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) )  →  ( ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑦 )  ⊆  𝑆  ↔  𝑦  ⊆  ( ◡ ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 ) ) )  | 
						
						
							| 97 | 
							
								92 95 96
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  ( ( ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑦 )  ⊆  𝑆  ↔  𝑦  ⊆  ( ◡ ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 ) ) )  | 
						
						
							| 98 | 
							
								80 97
							 | 
							mpbid | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  𝑦  ⊆  ( ◡ ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 ) )  | 
						
						
							| 99 | 
							
								41
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  [ 𝐴 ]  ∼   =  ( ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 ) )  | 
						
						
							| 100 | 
							
								
							 | 
							imacnvcnv | 
							⊢ ( ◡ ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 )  =  ( ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 )  | 
						
						
							| 101 | 
							
								99 100
							 | 
							eqtr4di | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  [ 𝐴 ]  ∼   =  ( ◡ ◡ ( 𝑧  ∈  𝑋  ↦  ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) )  “  𝑆 ) )  | 
						
						
							| 102 | 
							
								98 101
							 | 
							sseqtrrd | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑦  ⊆  𝑋  ∧  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  →  𝑦  ⊆  [ 𝐴 ]  ∼  )  | 
						
						
							| 103 | 
							
								102
							 | 
							expr | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ⊆  𝑋 )  →  ( ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn )  →  𝑦  ⊆  [ 𝐴 ]  ∼  ) )  | 
						
						
							| 104 | 
							
								58 103
							 | 
							sylan2 | 
							⊢ ( ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝒫  𝑋 )  →  ( ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn )  →  𝑦  ⊆  [ 𝐴 ]  ∼  ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							ralrimiva | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ∀ 𝑦  ∈  𝒫  𝑋 ( ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn )  →  𝑦  ⊆  [ 𝐴 ]  ∼  ) )  | 
						
						
							| 106 | 
							
								
							 | 
							eleq2w | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∈  𝑥  ↔  𝐴  ∈  𝑦 ) )  | 
						
						
							| 107 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝐽  ↾t  𝑥 )  =  ( 𝐽  ↾t  𝑦 ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							eleq1d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝐽  ↾t  𝑥 )  ∈  Conn  ↔  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) )  | 
						
						
							| 109 | 
							
								106 108
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn )  ↔  ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn ) ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							ralrab | 
							⊢ ( ∀ 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) } 𝑦  ⊆  [ 𝐴 ]  ∼   ↔  ∀ 𝑦  ∈  𝒫  𝑋 ( ( 𝐴  ∈  𝑦  ∧  ( 𝐽  ↾t  𝑦 )  ∈  Conn )  →  𝑦  ⊆  [ 𝐴 ]  ∼  ) )  | 
						
						
							| 111 | 
							
								105 110
							 | 
							sylibr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ∀ 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) } 𝑦  ⊆  [ 𝐴 ]  ∼  )  | 
						
						
							| 112 | 
							
								
							 | 
							unissb | 
							⊢ ( ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  ⊆  [ 𝐴 ]  ∼   ↔  ∀ 𝑦  ∈  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) } 𝑦  ⊆  [ 𝐴 ]  ∼  )  | 
						
						
							| 113 | 
							
								111 112
							 | 
							sylibr | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) }  ⊆  [ 𝐴 ]  ∼  )  | 
						
						
							| 114 | 
							
								57 113
							 | 
							eqssd | 
							⊢ ( ( 𝐺  ∈  TopGrp  ∧  𝐴  ∈  𝑋 )  →  [ 𝐴 ]  ∼   =  ∪  { 𝑥  ∈  𝒫  𝑋  ∣  ( 𝐴  ∈  𝑥  ∧  ( 𝐽  ↾t  𝑥 )  ∈  Conn ) } )  |